k3s/vendor/gonum.org/v1/gonum/mat/hogsvd.go

240 lines
5.8 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"errors"
"gonum.org/v1/gonum/blas/blas64"
)
// HOGSVD is a type for creating and using the Higher Order Generalized Singular Value
// Decomposition (HOGSVD) of a set of matrices.
//
// The factorization is a linear transformation of the data sets from the given
// variable×sample spaces to reduced and diagonalized "eigenvariable"×"eigensample"
// spaces.
type HOGSVD struct {
n int
v *Dense
b []Dense
err error
}
// succFact returns whether the receiver contains a successful factorization.
func (gsvd *HOGSVD) succFact() bool {
return gsvd.n != 0
}
// Factorize computes the higher order generalized singular value decomposition (HOGSVD)
// of the n input r_i×c column tall matrices in m. HOGSV extends the GSVD case from 2 to n
// input matrices.
//
// M_0 = U_0 * Σ_0 * Vᵀ
// M_1 = U_1 * Σ_1 * Vᵀ
// .
// .
// .
// M_{n-1} = U_{n-1} * Σ_{n-1} * Vᵀ
//
// where U_i are r_i×c matrices of singular vectors, Σ are c×c matrices singular values, and V
// is a c×c matrix of singular vectors.
//
// Factorize returns whether the decomposition succeeded. If the decomposition
// failed, routines that require a successful factorization will panic.
func (gsvd *HOGSVD) Factorize(m ...Matrix) (ok bool) {
// Factorize performs the HOGSVD factorisation
// essentially as described by Ponnapalli et al.
// https://doi.org/10.1371/journal.pone.0028072
if len(m) < 2 {
panic("hogsvd: too few matrices")
}
gsvd.n = 0
r, c := m[0].Dims()
a := make([]Cholesky, len(m))
var ts SymDense
for i, d := range m {
rd, cd := d.Dims()
if rd < cd {
gsvd.err = ErrShape
return false
}
if rd > r {
r = rd
}
if cd != c {
panic(ErrShape)
}
ts.Reset()
ts.SymOuterK(1, d.T())
ok = a[i].Factorize(&ts)
if !ok {
gsvd.err = errors.New("hogsvd: cholesky decomposition failed")
return false
}
}
s := getWorkspace(c, c, true)
defer putWorkspace(s)
sij := getWorkspace(c, c, false)
defer putWorkspace(sij)
for i, ai := range a {
for _, aj := range a[i+1:] {
gsvd.err = ai.SolveCholTo(sij, &aj)
if gsvd.err != nil {
return false
}
s.Add(s, sij)
gsvd.err = aj.SolveCholTo(sij, &ai)
if gsvd.err != nil {
return false
}
s.Add(s, sij)
}
}
s.Scale(1/float64(len(m)*(len(m)-1)), s)
var eig Eigen
ok = eig.Factorize(s.T(), EigenRight)
if !ok {
gsvd.err = errors.New("hogsvd: eigen decomposition failed")
return false
}
var vc CDense
eig.VectorsTo(&vc)
// vc is guaranteed to have real eigenvalues.
rc, cc := vc.Dims()
v := NewDense(rc, cc, nil)
for i := 0; i < rc; i++ {
for j := 0; j < cc; j++ {
a := vc.At(i, j)
v.set(i, j, real(a))
}
}
// Rescale the columns of v by their Frobenius norms.
// Work done in cv is reflected in v.
var cv VecDense
for j := 0; j < c; j++ {
cv.ColViewOf(v, j)
cv.ScaleVec(1/blas64.Nrm2(cv.mat), &cv)
}
b := make([]Dense, len(m))
biT := getWorkspace(c, r, false)
defer putWorkspace(biT)
for i, d := range m {
// All calls to reset will leave an emptied
// matrix with capacity to store the result
// without additional allocation.
biT.Reset()
gsvd.err = biT.Solve(v, d.T())
if gsvd.err != nil {
return false
}
b[i].CloneFrom(biT.T())
}
gsvd.n = len(m)
gsvd.v = v
gsvd.b = b
return true
}
// Err returns the reason for a factorization failure.
func (gsvd *HOGSVD) Err() error {
return gsvd.err
}
// Len returns the number of matrices that have been factorized. If Len returns
// zero, the factorization was not successful.
func (gsvd *HOGSVD) Len() int {
return gsvd.n
}
// UTo extracts the matrix U_n from the singular value decomposition, storing
// the result in-place into dst. U_n is size r×c.
//
// If dst is empty, UTo will resize dst to be r×c. When dst is
// non-empty, UTo will panic if dst is not r×c. UTo will also
// panic if the receiver does not contain a successful factorization.
func (gsvd *HOGSVD) UTo(dst *Dense, n int) {
if !gsvd.succFact() {
panic(badFact)
}
if n < 0 || gsvd.n <= n {
panic("hogsvd: invalid index")
}
r, c := gsvd.b[n].Dims()
if dst.IsEmpty() {
dst.ReuseAs(r, c)
} else {
r2, c2 := dst.Dims()
if r != r2 || c != c2 {
panic(ErrShape)
}
}
dst.Copy(&gsvd.b[n])
var v VecDense
for j, f := range gsvd.Values(nil, n) {
v.ColViewOf(dst, j)
v.ScaleVec(1/f, &v)
}
}
// Values returns the nth set of singular values of the factorized system.
// If the input slice is non-nil, the values will be stored in-place into the slice.
// In this case, the slice must have length c, and Values will panic with
// matrix.ErrSliceLengthMismatch otherwise. If the input slice is nil,
// a new slice of the appropriate length will be allocated and returned.
//
// Values will panic if the receiver does not contain a successful factorization.
func (gsvd *HOGSVD) Values(s []float64, n int) []float64 {
if !gsvd.succFact() {
panic(badFact)
}
if n < 0 || gsvd.n <= n {
panic("hogsvd: invalid index")
}
_, c := gsvd.b[n].Dims()
if s == nil {
s = make([]float64, c)
} else if len(s) != c {
panic(ErrSliceLengthMismatch)
}
var v VecDense
for j := 0; j < c; j++ {
v.ColViewOf(&gsvd.b[n], j)
s[j] = blas64.Nrm2(v.mat)
}
return s
}
// VTo extracts the matrix V from the singular value decomposition, storing
// the result in-place into dst. V is size c×c.
//
// If dst is empty, VTo will resize dst to be c×c. When dst is
// non-empty, VTo will panic if dst is not c×c. VTo will also
// panic if the receiver does not contain a successful factorization.
func (gsvd *HOGSVD) VTo(dst *Dense) {
if !gsvd.succFact() {
panic(badFact)
}
r, c := gsvd.v.Dims()
if dst.IsEmpty() {
dst.ReuseAs(r, c)
} else {
r2, c2 := dst.Dims()
if r != r2 || c != c2 {
panic(ErrShape)
}
}
dst.Copy(gsvd.v)
}