k3s/vendor/gonum.org/v1/gonum/mat/dense.go

583 lines
15 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

// Copyright ©2013 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
)
var (
dense *Dense
_ Matrix = dense
_ allMatrix = dense
_ denseMatrix = dense
_ Mutable = dense
_ ClonerFrom = dense
_ RowViewer = dense
_ ColViewer = dense
_ RawRowViewer = dense
_ Grower = dense
_ RawMatrixSetter = dense
_ RawMatrixer = dense
_ Reseter = dense
)
// Dense is a dense matrix representation.
type Dense struct {
mat blas64.General
capRows, capCols int
}
// NewDense creates a new Dense matrix with r rows and c columns. If data == nil,
// a new slice is allocated for the backing slice. If len(data) == r*c, data is
// used as the backing slice, and changes to the elements of the returned Dense
// will be reflected in data. If neither of these is true, NewDense will panic.
// NewDense will panic if either r or c is zero.
//
// The data must be arranged in row-major order, i.e. the (i*c + j)-th
// element in the data slice is the {i, j}-th element in the matrix.
func NewDense(r, c int, data []float64) *Dense {
if r <= 0 || c <= 0 {
if r == 0 || c == 0 {
panic(ErrZeroLength)
}
panic(ErrNegativeDimension)
}
if data != nil && r*c != len(data) {
panic(ErrShape)
}
if data == nil {
data = make([]float64, r*c)
}
return &Dense{
mat: blas64.General{
Rows: r,
Cols: c,
Stride: c,
Data: data,
},
capRows: r,
capCols: c,
}
}
// ReuseAs changes the receiver if it IsEmpty() to be of size r×c.
//
// ReuseAs re-uses the backing data slice if it has sufficient capacity,
// otherwise a new slice is allocated. The backing data is zero on return.
//
// ReuseAs panics if the receiver is not empty, and panics if
// the input sizes are less than one. To empty the receiver for re-use,
// Reset should be used.
func (m *Dense) ReuseAs(r, c int) {
if r <= 0 || c <= 0 {
if r == 0 || c == 0 {
panic(ErrZeroLength)
}
panic(ErrNegativeDimension)
}
if !m.IsEmpty() {
panic(ErrReuseNonEmpty)
}
m.reuseAsZeroed(r, c)
}
// reuseAsNonZeroed resizes an empty matrix to a r×c matrix,
// or checks that a non-empty matrix is r×c. It does not zero
// the data in the receiver.
func (m *Dense) reuseAsNonZeroed(r, c int) {
// reuseAs must be kept in sync with reuseAsZeroed.
if m.mat.Rows > m.capRows || m.mat.Cols > m.capCols {
// Panic as a string, not a mat.Error.
panic("mat: caps not correctly set")
}
if r == 0 || c == 0 {
panic(ErrZeroLength)
}
if m.IsEmpty() {
m.mat = blas64.General{
Rows: r,
Cols: c,
Stride: c,
Data: use(m.mat.Data, r*c),
}
m.capRows = r
m.capCols = c
return
}
if r != m.mat.Rows || c != m.mat.Cols {
panic(ErrShape)
}
}
// reuseAsZeroed resizes an empty matrix to a r×c matrix,
// or checks that a non-empty matrix is r×c. It zeroes
// all the elements of the matrix.
func (m *Dense) reuseAsZeroed(r, c int) {
// reuseAsZeroed must be kept in sync with reuseAsNonZeroed.
if m.mat.Rows > m.capRows || m.mat.Cols > m.capCols {
// Panic as a string, not a mat.Error.
panic("mat: caps not correctly set")
}
if r == 0 || c == 0 {
panic(ErrZeroLength)
}
if m.IsEmpty() {
m.mat = blas64.General{
Rows: r,
Cols: c,
Stride: c,
Data: useZeroed(m.mat.Data, r*c),
}
m.capRows = r
m.capCols = c
return
}
if r != m.mat.Rows || c != m.mat.Cols {
panic(ErrShape)
}
m.Zero()
}
// Zero sets all of the matrix elements to zero.
func (m *Dense) Zero() {
r := m.mat.Rows
c := m.mat.Cols
for i := 0; i < r; i++ {
zero(m.mat.Data[i*m.mat.Stride : i*m.mat.Stride+c])
}
}
// isolatedWorkspace returns a new dense matrix w with the size of a and
// returns a callback to defer which performs cleanup at the return of the call.
// This should be used when a method receiver is the same pointer as an input argument.
func (m *Dense) isolatedWorkspace(a Matrix) (w *Dense, restore func()) {
r, c := a.Dims()
if r == 0 || c == 0 {
panic(ErrZeroLength)
}
w = getWorkspace(r, c, false)
return w, func() {
m.Copy(w)
putWorkspace(w)
}
}
// Reset empties the matrix so that it can be reused as the
// receiver of a dimensionally restricted operation.
//
// Reset should not be used when the matrix shares backing data.
// See the Reseter interface for more information.
func (m *Dense) Reset() {
// Row, Cols and Stride must be zeroed in unison.
m.mat.Rows, m.mat.Cols, m.mat.Stride = 0, 0, 0
m.capRows, m.capCols = 0, 0
m.mat.Data = m.mat.Data[:0]
}
// IsEmpty returns whether the receiver is empty. Empty matrices can be the
// receiver for size-restricted operations. The receiver can be emptied using
// Reset.
func (m *Dense) IsEmpty() bool {
// It must be the case that m.Dims() returns
// zeros in this case. See comment in Reset().
return m.mat.Stride == 0
}
// asTriDense returns a TriDense with the given size and side. The backing data
// of the TriDense is the same as the receiver.
func (m *Dense) asTriDense(n int, diag blas.Diag, uplo blas.Uplo) *TriDense {
return &TriDense{
mat: blas64.Triangular{
N: n,
Stride: m.mat.Stride,
Data: m.mat.Data,
Uplo: uplo,
Diag: diag,
},
cap: n,
}
}
// DenseCopyOf returns a newly allocated copy of the elements of a.
func DenseCopyOf(a Matrix) *Dense {
d := &Dense{}
d.CloneFrom(a)
return d
}
// SetRawMatrix sets the underlying blas64.General used by the receiver.
// Changes to elements in the receiver following the call will be reflected
// in b.
func (m *Dense) SetRawMatrix(b blas64.General) {
m.capRows, m.capCols = b.Rows, b.Cols
m.mat = b
}
// RawMatrix returns the underlying blas64.General used by the receiver.
// Changes to elements in the receiver following the call will be reflected
// in returned blas64.General.
func (m *Dense) RawMatrix() blas64.General { return m.mat }
// Dims returns the number of rows and columns in the matrix.
func (m *Dense) Dims() (r, c int) { return m.mat.Rows, m.mat.Cols }
// Caps returns the number of rows and columns in the backing matrix.
func (m *Dense) Caps() (r, c int) { return m.capRows, m.capCols }
// T performs an implicit transpose by returning the receiver inside a Transpose.
func (m *Dense) T() Matrix {
return Transpose{m}
}
// ColView returns a Vector reflecting the column j, backed by the matrix data.
//
// See ColViewer for more information.
func (m *Dense) ColView(j int) Vector {
var v VecDense
v.ColViewOf(m, j)
return &v
}
// SetCol sets the values in the specified column of the matrix to the values
// in src. len(src) must equal the number of rows in the receiver.
func (m *Dense) SetCol(j int, src []float64) {
if j >= m.mat.Cols || j < 0 {
panic(ErrColAccess)
}
if len(src) != m.mat.Rows {
panic(ErrColLength)
}
blas64.Copy(
blas64.Vector{N: m.mat.Rows, Inc: 1, Data: src},
blas64.Vector{N: m.mat.Rows, Inc: m.mat.Stride, Data: m.mat.Data[j:]},
)
}
// SetRow sets the values in the specified rows of the matrix to the values
// in src. len(src) must equal the number of columns in the receiver.
func (m *Dense) SetRow(i int, src []float64) {
if i >= m.mat.Rows || i < 0 {
panic(ErrRowAccess)
}
if len(src) != m.mat.Cols {
panic(ErrRowLength)
}
copy(m.rawRowView(i), src)
}
// RowView returns row i of the matrix data represented as a column vector,
// backed by the matrix data.
//
// See RowViewer for more information.
func (m *Dense) RowView(i int) Vector {
var v VecDense
v.RowViewOf(m, i)
return &v
}
// RawRowView returns a slice backed by the same array as backing the
// receiver.
func (m *Dense) RawRowView(i int) []float64 {
if i >= m.mat.Rows || i < 0 {
panic(ErrRowAccess)
}
return m.rawRowView(i)
}
func (m *Dense) rawRowView(i int) []float64 {
return m.mat.Data[i*m.mat.Stride : i*m.mat.Stride+m.mat.Cols]
}
// DiagView returns the diagonal as a matrix backed by the original data.
func (m *Dense) DiagView() Diagonal {
n := min(m.mat.Rows, m.mat.Cols)
return &DiagDense{
mat: blas64.Vector{
N: n,
Inc: m.mat.Stride + 1,
Data: m.mat.Data[:(n-1)*m.mat.Stride+n],
},
}
}
// Slice returns a new Matrix that shares backing data with the receiver.
// The returned matrix starts at {i,j} of the receiver and extends k-i rows
// and l-j columns. The final row in the resulting matrix is k-1 and the
// final column is l-1.
// Slice panics with ErrIndexOutOfRange if the slice is outside the capacity
// of the receiver.
func (m *Dense) Slice(i, k, j, l int) Matrix {
mr, mc := m.Caps()
if i < 0 || mr <= i || j < 0 || mc <= j || k < i || mr < k || l < j || mc < l {
if i == k || j == l {
panic(ErrZeroLength)
}
panic(ErrIndexOutOfRange)
}
t := *m
t.mat.Data = t.mat.Data[i*t.mat.Stride+j : (k-1)*t.mat.Stride+l]
t.mat.Rows = k - i
t.mat.Cols = l - j
t.capRows -= i
t.capCols -= j
return &t
}
// Grow returns the receiver expanded by r rows and c columns. If the dimensions
// of the expanded matrix are outside the capacities of the receiver a new
// allocation is made, otherwise not. Note the receiver itself is not modified
// during the call to Grow.
func (m *Dense) Grow(r, c int) Matrix {
if r < 0 || c < 0 {
panic(ErrIndexOutOfRange)
}
if r == 0 && c == 0 {
return m
}
r += m.mat.Rows
c += m.mat.Cols
var t Dense
switch {
case m.mat.Rows == 0 || m.mat.Cols == 0:
t.mat = blas64.General{
Rows: r,
Cols: c,
Stride: c,
// We zero because we don't know how the matrix will be used.
// In other places, the mat is immediately filled with a result;
// this is not the case here.
Data: useZeroed(m.mat.Data, r*c),
}
case r > m.capRows || c > m.capCols:
cr := max(r, m.capRows)
cc := max(c, m.capCols)
t.mat = blas64.General{
Rows: r,
Cols: c,
Stride: cc,
Data: make([]float64, cr*cc),
}
t.capRows = cr
t.capCols = cc
// Copy the complete matrix over to the new matrix.
// Including elements not currently visible. Use a temporary structure
// to avoid modifying the receiver.
var tmp Dense
tmp.mat = blas64.General{
Rows: m.mat.Rows,
Cols: m.mat.Cols,
Stride: m.mat.Stride,
Data: m.mat.Data,
}
tmp.capRows = m.capRows
tmp.capCols = m.capCols
t.Copy(&tmp)
return &t
default:
t.mat = blas64.General{
Data: m.mat.Data[:(r-1)*m.mat.Stride+c],
Rows: r,
Cols: c,
Stride: m.mat.Stride,
}
}
t.capRows = r
t.capCols = c
return &t
}
// CloneFrom makes a copy of a into the receiver, overwriting the previous value of
// the receiver. The clone from operation does not make any restriction on shape and
// will not cause shadowing.
//
// See the ClonerFrom interface for more information.
func (m *Dense) CloneFrom(a Matrix) {
r, c := a.Dims()
mat := blas64.General{
Rows: r,
Cols: c,
Stride: c,
}
m.capRows, m.capCols = r, c
aU, trans := untransposeExtract(a)
switch aU := aU.(type) {
case *Dense:
amat := aU.mat
mat.Data = make([]float64, r*c)
if trans {
for i := 0; i < r; i++ {
blas64.Copy(blas64.Vector{N: c, Inc: amat.Stride, Data: amat.Data[i : i+(c-1)*amat.Stride+1]},
blas64.Vector{N: c, Inc: 1, Data: mat.Data[i*c : (i+1)*c]})
}
} else {
for i := 0; i < r; i++ {
copy(mat.Data[i*c:(i+1)*c], amat.Data[i*amat.Stride:i*amat.Stride+c])
}
}
case *VecDense:
amat := aU.mat
mat.Data = make([]float64, aU.mat.N)
blas64.Copy(blas64.Vector{N: aU.mat.N, Inc: amat.Inc, Data: amat.Data},
blas64.Vector{N: aU.mat.N, Inc: 1, Data: mat.Data})
default:
mat.Data = make([]float64, r*c)
w := *m
w.mat = mat
for i := 0; i < r; i++ {
for j := 0; j < c; j++ {
w.set(i, j, a.At(i, j))
}
}
*m = w
return
}
m.mat = mat
}
// Copy makes a copy of elements of a into the receiver. It is similar to the
// built-in copy; it copies as much as the overlap between the two matrices and
// returns the number of rows and columns it copied. If a aliases the receiver
// and is a transposed Dense or VecDense, with a non-unitary increment, Copy will
// panic.
//
// See the Copier interface for more information.
func (m *Dense) Copy(a Matrix) (r, c int) {
r, c = a.Dims()
if a == m {
return r, c
}
r = min(r, m.mat.Rows)
c = min(c, m.mat.Cols)
if r == 0 || c == 0 {
return 0, 0
}
aU, trans := untransposeExtract(a)
switch aU := aU.(type) {
case *Dense:
amat := aU.mat
if trans {
if amat.Stride != 1 {
m.checkOverlap(amat)
}
for i := 0; i < r; i++ {
blas64.Copy(blas64.Vector{N: c, Inc: amat.Stride, Data: amat.Data[i : i+(c-1)*amat.Stride+1]},
blas64.Vector{N: c, Inc: 1, Data: m.mat.Data[i*m.mat.Stride : i*m.mat.Stride+c]})
}
} else {
switch o := offset(m.mat.Data, amat.Data); {
case o < 0:
for i := r - 1; i >= 0; i-- {
copy(m.mat.Data[i*m.mat.Stride:i*m.mat.Stride+c], amat.Data[i*amat.Stride:i*amat.Stride+c])
}
case o > 0:
for i := 0; i < r; i++ {
copy(m.mat.Data[i*m.mat.Stride:i*m.mat.Stride+c], amat.Data[i*amat.Stride:i*amat.Stride+c])
}
default:
// Nothing to do.
}
}
case *VecDense:
var n, stride int
amat := aU.mat
if trans {
if amat.Inc != 1 {
m.checkOverlap(aU.asGeneral())
}
n = c
stride = 1
} else {
n = r
stride = m.mat.Stride
}
if amat.Inc == 1 && stride == 1 {
copy(m.mat.Data, amat.Data[:n])
break
}
switch o := offset(m.mat.Data, amat.Data); {
case o < 0:
blas64.Copy(blas64.Vector{N: n, Inc: -amat.Inc, Data: amat.Data},
blas64.Vector{N: n, Inc: -stride, Data: m.mat.Data})
case o > 0:
blas64.Copy(blas64.Vector{N: n, Inc: amat.Inc, Data: amat.Data},
blas64.Vector{N: n, Inc: stride, Data: m.mat.Data})
default:
// Nothing to do.
}
default:
m.checkOverlapMatrix(aU)
for i := 0; i < r; i++ {
for j := 0; j < c; j++ {
m.set(i, j, a.At(i, j))
}
}
}
return r, c
}
// Stack appends the rows of b onto the rows of a, placing the result into the
// receiver with b placed in the greater indexed rows. Stack will panic if the
// two input matrices do not have the same number of columns or the constructed
// stacked matrix is not the same shape as the receiver.
func (m *Dense) Stack(a, b Matrix) {
ar, ac := a.Dims()
br, bc := b.Dims()
if ac != bc || m == a || m == b {
panic(ErrShape)
}
m.reuseAsNonZeroed(ar+br, ac)
m.Copy(a)
w := m.Slice(ar, ar+br, 0, bc).(*Dense)
w.Copy(b)
}
// Augment creates the augmented matrix of a and b, where b is placed in the
// greater indexed columns. Augment will panic if the two input matrices do
// not have the same number of rows or the constructed augmented matrix is
// not the same shape as the receiver.
func (m *Dense) Augment(a, b Matrix) {
ar, ac := a.Dims()
br, bc := b.Dims()
if ar != br || m == a || m == b {
panic(ErrShape)
}
m.reuseAsNonZeroed(ar, ac+bc)
m.Copy(a)
w := m.Slice(0, br, ac, ac+bc).(*Dense)
w.Copy(b)
}
// Trace returns the trace of the matrix. The matrix must be square or Trace
// will panic.
func (m *Dense) Trace() float64 {
if m.mat.Rows != m.mat.Cols {
panic(ErrSquare)
}
// TODO(btracey): could use internal asm sum routine.
var v float64
for i := 0; i < m.mat.Rows; i++ {
v += m.mat.Data[i*m.mat.Stride+i]
}
return v
}