k3s/vendor/github.com/ugorji/go/codec/encode.go

1415 lines
35 KiB
Go

// Copyright (c) 2012-2015 Ugorji Nwoke. All rights reserved.
// Use of this source code is governed by a MIT license found in the LICENSE file.
package codec
import (
"bufio"
"encoding"
"fmt"
"io"
"reflect"
"sort"
"sync"
)
const defEncByteBufSize = 1 << 6 // 4:16, 6:64, 8:256, 10:1024
// AsSymbolFlag defines what should be encoded as symbols.
type AsSymbolFlag uint8
const (
// AsSymbolDefault is default.
// Currently, this means only encode struct field names as symbols.
// The default is subject to change.
AsSymbolDefault AsSymbolFlag = iota
// AsSymbolAll means encode anything which could be a symbol as a symbol.
AsSymbolAll = 0xfe
// AsSymbolNone means do not encode anything as a symbol.
AsSymbolNone = 1 << iota
// AsSymbolMapStringKeys means encode keys in map[string]XXX as symbols.
AsSymbolMapStringKeysFlag
// AsSymbolStructFieldName means encode struct field names as symbols.
AsSymbolStructFieldNameFlag
)
// encWriter abstracts writing to a byte array or to an io.Writer.
type encWriter interface {
writeb([]byte)
writestr(string)
writen1(byte)
writen2(byte, byte)
writen4(byte, byte, byte, byte)
writen5(byte, byte, byte, byte, byte)
atEndOfEncode()
}
// encDriver abstracts the actual codec (binc vs msgpack, etc)
type encDriver interface {
// IsBuiltinType(rt uintptr) bool
EncodeBuiltin(rt uintptr, v interface{})
EncodeNil()
EncodeInt(i int64)
EncodeUint(i uint64)
EncodeBool(b bool)
EncodeFloat32(f float32)
EncodeFloat64(f float64)
// encodeExtPreamble(xtag byte, length int)
EncodeRawExt(re *RawExt, e *Encoder)
EncodeExt(v interface{}, xtag uint64, ext Ext, e *Encoder)
WriteArrayStart(length int)
WriteArrayElem()
WriteArrayEnd()
WriteMapStart(length int)
WriteMapElemKey()
WriteMapElemValue()
WriteMapEnd()
EncodeString(c charEncoding, v string)
EncodeSymbol(v string)
EncodeStringBytes(c charEncoding, v []byte)
//TODO
//encBignum(f *big.Int)
//encStringRunes(c charEncoding, v []rune)
reset()
atEndOfEncode()
}
type ioEncStringWriter interface {
WriteString(s string) (n int, err error)
}
type ioEncFlusher interface {
Flush() error
}
type encDriverAsis interface {
EncodeAsis(v []byte)
}
// type encNoSeparator struct{}
// func (_ encNoSeparator) EncodeEnd() {}
type encDriverNoopContainerWriter struct{}
func (_ encDriverNoopContainerWriter) WriteArrayStart(length int) {}
func (_ encDriverNoopContainerWriter) WriteArrayElem() {}
func (_ encDriverNoopContainerWriter) WriteArrayEnd() {}
func (_ encDriverNoopContainerWriter) WriteMapStart(length int) {}
func (_ encDriverNoopContainerWriter) WriteMapElemKey() {}
func (_ encDriverNoopContainerWriter) WriteMapElemValue() {}
func (_ encDriverNoopContainerWriter) WriteMapEnd() {}
func (_ encDriverNoopContainerWriter) atEndOfEncode() {}
// type ioEncWriterWriter interface {
// WriteByte(c byte) error
// WriteString(s string) (n int, err error)
// Write(p []byte) (n int, err error)
// }
type EncodeOptions struct {
// Encode a struct as an array, and not as a map
StructToArray bool
// Canonical representation means that encoding a value will always result in the same
// sequence of bytes.
//
// This only affects maps, as the iteration order for maps is random.
//
// The implementation MAY use the natural sort order for the map keys if possible:
//
// - If there is a natural sort order (ie for number, bool, string or []byte keys),
// then the map keys are first sorted in natural order and then written
// with corresponding map values to the strema.
// - If there is no natural sort order, then the map keys will first be
// encoded into []byte, and then sorted,
// before writing the sorted keys and the corresponding map values to the stream.
//
Canonical bool
// CheckCircularRef controls whether we check for circular references
// and error fast during an encode.
//
// If enabled, an error is received if a pointer to a struct
// references itself either directly or through one of its fields (iteratively).
//
// This is opt-in, as there may be a performance hit to checking circular references.
CheckCircularRef bool
// RecursiveEmptyCheck controls whether we descend into interfaces, structs and pointers
// when checking if a value is empty.
//
// Note that this may make OmitEmpty more expensive, as it incurs a lot more reflect calls.
RecursiveEmptyCheck bool
// Raw controls whether we encode Raw values.
// This is a "dangerous" option and must be explicitly set.
// If set, we blindly encode Raw values as-is, without checking
// if they are a correct representation of a value in that format.
// If unset, we error out.
Raw bool
// AsSymbols defines what should be encoded as symbols.
//
// Encoding as symbols can reduce the encoded size significantly.
//
// However, during decoding, each string to be encoded as a symbol must
// be checked to see if it has been seen before. Consequently, encoding time
// will increase if using symbols, because string comparisons has a clear cost.
//
// Sample values:
// AsSymbolNone
// AsSymbolAll
// AsSymbolMapStringKeys
// AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag
AsSymbols AsSymbolFlag
// WriterBufferSize is the size of the buffer used when writing.
//
// if > 0, we use a smart buffer internally for performance purposes.
WriterBufferSize int
}
// ---------------------------------------------
type simpleIoEncWriter struct {
io.Writer
}
// type bufIoEncWriter struct {
// w io.Writer
// buf []byte
// err error
// }
// func (x *bufIoEncWriter) Write(b []byte) (n int, err error) {
// if x.err != nil {
// return 0, x.err
// }
// if cap(x.buf)-len(x.buf) >= len(b) {
// x.buf = append(x.buf, b)
// return len(b), nil
// }
// n, err = x.w.Write(x.buf)
// if err != nil {
// x.err = err
// return 0, x.err
// }
// n, err = x.w.Write(b)
// x.err = err
// return
// }
// ioEncWriter implements encWriter and can write to an io.Writer implementation
type ioEncWriter struct {
w io.Writer
ww io.Writer
bw io.ByteWriter
sw ioEncStringWriter
fw ioEncFlusher
b [8]byte
}
func (z *ioEncWriter) WriteByte(b byte) (err error) {
// x.bs[0] = b
// _, err = x.ww.Write(x.bs[:])
z.b[0] = b
_, err = z.w.Write(z.b[:1])
return
}
func (z *ioEncWriter) WriteString(s string) (n int, err error) {
return z.w.Write(bytesView(s))
}
func (z *ioEncWriter) writeb(bs []byte) {
// if len(bs) == 0 {
// return
// }
if _, err := z.ww.Write(bs); err != nil {
panic(err)
}
}
func (z *ioEncWriter) writestr(s string) {
// if len(s) == 0 {
// return
// }
if _, err := z.sw.WriteString(s); err != nil {
panic(err)
}
}
func (z *ioEncWriter) writen1(b byte) {
if err := z.bw.WriteByte(b); err != nil {
panic(err)
}
}
func (z *ioEncWriter) writen2(b1, b2 byte) {
var err error
if err = z.bw.WriteByte(b1); err == nil {
if err = z.bw.WriteByte(b2); err == nil {
return
}
}
panic(err)
}
func (z *ioEncWriter) writen4(b1, b2, b3, b4 byte) {
z.b[0], z.b[1], z.b[2], z.b[3] = b1, b2, b3, b4
if _, err := z.ww.Write(z.b[:4]); err != nil {
panic(err)
}
}
func (z *ioEncWriter) writen5(b1, b2, b3, b4, b5 byte) {
z.b[0], z.b[1], z.b[2], z.b[3], z.b[4] = b1, b2, b3, b4, b5
if _, err := z.ww.Write(z.b[:5]); err != nil {
panic(err)
}
}
func (z *ioEncWriter) atEndOfEncode() {
if z.fw != nil {
z.fw.Flush()
}
}
// ----------------------------------------
// bytesEncWriter implements encWriter and can write to an byte slice.
// It is used by Marshal function.
type bytesEncWriter struct {
b []byte
c int // cursor
out *[]byte // write out on atEndOfEncode
}
func (z *bytesEncWriter) writeb(s []byte) {
oc, a := z.growNoAlloc(len(s))
if a {
z.growAlloc(len(s), oc)
}
copy(z.b[oc:], s)
}
func (z *bytesEncWriter) writestr(s string) {
oc, a := z.growNoAlloc(len(s))
if a {
z.growAlloc(len(s), oc)
}
copy(z.b[oc:], s)
}
func (z *bytesEncWriter) writen1(b1 byte) {
oc, a := z.growNoAlloc(1)
if a {
z.growAlloc(1, oc)
}
z.b[oc] = b1
}
func (z *bytesEncWriter) writen2(b1, b2 byte) {
oc, a := z.growNoAlloc(2)
if a {
z.growAlloc(2, oc)
}
z.b[oc+1] = b2
z.b[oc] = b1
}
func (z *bytesEncWriter) writen4(b1, b2, b3, b4 byte) {
oc, a := z.growNoAlloc(4)
if a {
z.growAlloc(4, oc)
}
z.b[oc+3] = b4
z.b[oc+2] = b3
z.b[oc+1] = b2
z.b[oc] = b1
}
func (z *bytesEncWriter) writen5(b1, b2, b3, b4, b5 byte) {
oc, a := z.growNoAlloc(5)
if a {
z.growAlloc(5, oc)
}
z.b[oc+4] = b5
z.b[oc+3] = b4
z.b[oc+2] = b3
z.b[oc+1] = b2
z.b[oc] = b1
}
func (z *bytesEncWriter) atEndOfEncode() {
*(z.out) = z.b[:z.c]
}
// have a growNoalloc(n int), which can be inlined.
// if allocation is needed, then call growAlloc(n int)
func (z *bytesEncWriter) growNoAlloc(n int) (oldcursor int, allocNeeded bool) {
oldcursor = z.c
z.c = z.c + n
if z.c > len(z.b) {
if z.c > cap(z.b) {
allocNeeded = true
} else {
z.b = z.b[:cap(z.b)]
}
}
return
}
func (z *bytesEncWriter) growAlloc(n int, oldcursor int) {
// appendslice logic (if cap < 1024, *2, else *1.25): more expensive. many copy calls.
// bytes.Buffer model (2*cap + n): much better
// bs := make([]byte, 2*cap(z.b)+n)
bs := make([]byte, growCap(cap(z.b), 1, n))
copy(bs, z.b[:oldcursor])
z.b = bs
}
// ---------------------------------------------
func (e *Encoder) builtin(f *codecFnInfo, rv reflect.Value) {
e.e.EncodeBuiltin(f.ti.rtid, rv2i(rv))
}
func (e *Encoder) raw(f *codecFnInfo, rv reflect.Value) {
e.rawBytes(rv2i(rv).(Raw))
}
func (e *Encoder) rawExt(f *codecFnInfo, rv reflect.Value) {
// rev := rv2i(rv).(RawExt)
// e.e.EncodeRawExt(&rev, e)
var re *RawExt
if rv.CanAddr() {
re = rv2i(rv.Addr()).(*RawExt)
} else {
rev := rv2i(rv).(RawExt)
re = &rev
}
e.e.EncodeRawExt(re, e)
}
func (e *Encoder) ext(f *codecFnInfo, rv reflect.Value) {
// if this is a struct|array and it was addressable, then pass the address directly (not the value)
if k := rv.Kind(); (k == reflect.Struct || k == reflect.Array) && rv.CanAddr() {
rv = rv.Addr()
}
e.e.EncodeExt(rv2i(rv), f.xfTag, f.xfFn, e)
}
func (e *Encoder) getValueForMarshalInterface(rv reflect.Value, indir int8) (v interface{}, proceed bool) {
if indir == 0 {
v = rv2i(rv)
} else if indir == -1 {
// If a non-pointer was passed to Encode(), then that value is not addressable.
// Take addr if addressable, else copy value to an addressable value.
if rv.CanAddr() {
v = rv2i(rv.Addr())
} else {
rv2 := reflect.New(rv.Type())
rv2.Elem().Set(rv)
v = rv2i(rv2)
}
} else {
for j := int8(0); j < indir; j++ {
if rv.IsNil() {
e.e.EncodeNil()
return
}
rv = rv.Elem()
}
v = rv2i(rv)
}
return v, true
}
func (e *Encoder) selferMarshal(f *codecFnInfo, rv reflect.Value) {
if v, proceed := e.getValueForMarshalInterface(rv, f.ti.csIndir); proceed {
v.(Selfer).CodecEncodeSelf(e)
}
}
func (e *Encoder) binaryMarshal(f *codecFnInfo, rv reflect.Value) {
if v, proceed := e.getValueForMarshalInterface(rv, f.ti.bmIndir); proceed {
bs, fnerr := v.(encoding.BinaryMarshaler).MarshalBinary()
e.marshal(bs, fnerr, false, c_RAW)
}
}
func (e *Encoder) textMarshal(f *codecFnInfo, rv reflect.Value) {
if v, proceed := e.getValueForMarshalInterface(rv, f.ti.tmIndir); proceed {
bs, fnerr := v.(encoding.TextMarshaler).MarshalText()
e.marshal(bs, fnerr, false, c_UTF8)
}
}
func (e *Encoder) jsonMarshal(f *codecFnInfo, rv reflect.Value) {
if v, proceed := e.getValueForMarshalInterface(rv, f.ti.jmIndir); proceed {
bs, fnerr := v.(jsonMarshaler).MarshalJSON()
e.marshal(bs, fnerr, true, c_UTF8)
}
}
func (e *Encoder) kBool(f *codecFnInfo, rv reflect.Value) {
e.e.EncodeBool(rv.Bool())
}
func (e *Encoder) kString(f *codecFnInfo, rv reflect.Value) {
e.e.EncodeString(c_UTF8, rv.String())
}
func (e *Encoder) kFloat64(f *codecFnInfo, rv reflect.Value) {
e.e.EncodeFloat64(rv.Float())
}
func (e *Encoder) kFloat32(f *codecFnInfo, rv reflect.Value) {
e.e.EncodeFloat32(float32(rv.Float()))
}
func (e *Encoder) kInt(f *codecFnInfo, rv reflect.Value) {
e.e.EncodeInt(rv.Int())
}
func (e *Encoder) kUint(f *codecFnInfo, rv reflect.Value) {
e.e.EncodeUint(rv.Uint())
}
func (e *Encoder) kInvalid(f *codecFnInfo, rv reflect.Value) {
e.e.EncodeNil()
}
func (e *Encoder) kErr(f *codecFnInfo, rv reflect.Value) {
e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv)
}
func (e *Encoder) kSlice(f *codecFnInfo, rv reflect.Value) {
ti := f.ti
ee := e.e
// array may be non-addressable, so we have to manage with care
// (don't call rv.Bytes, rv.Slice, etc).
// E.g. type struct S{B [2]byte};
// Encode(S{}) will bomb on "panic: slice of unaddressable array".
if f.seq != seqTypeArray {
if rv.IsNil() {
ee.EncodeNil()
return
}
// If in this method, then there was no extension function defined.
// So it's okay to treat as []byte.
if ti.rtid == uint8SliceTypId {
ee.EncodeStringBytes(c_RAW, rv.Bytes())
return
}
}
elemsep := e.hh.hasElemSeparators()
rtelem := ti.rt.Elem()
l := rv.Len()
if ti.rtid == uint8SliceTypId || rtelem.Kind() == reflect.Uint8 {
switch f.seq {
case seqTypeArray:
if rv.CanAddr() {
ee.EncodeStringBytes(c_RAW, rv.Slice(0, l).Bytes())
} else {
var bs []byte
if l <= cap(e.b) {
bs = e.b[:l]
} else {
bs = make([]byte, l)
}
reflect.Copy(reflect.ValueOf(bs), rv)
ee.EncodeStringBytes(c_RAW, bs)
}
return
case seqTypeSlice:
ee.EncodeStringBytes(c_RAW, rv.Bytes())
return
}
}
if ti.rtid == uint8SliceTypId && f.seq == seqTypeChan {
bs := e.b[:0]
// do not use range, so that the number of elements encoded
// does not change, and encoding does not hang waiting on someone to close chan.
// for b := range rv2i(rv).(<-chan byte) { bs = append(bs, b) }
ch := rv2i(rv).(<-chan byte)
for i := 0; i < l; i++ {
bs = append(bs, <-ch)
}
ee.EncodeStringBytes(c_RAW, bs)
return
}
if ti.mbs {
if l%2 == 1 {
e.errorf("mapBySlice requires even slice length, but got %v", l)
return
}
ee.WriteMapStart(l / 2)
} else {
ee.WriteArrayStart(l)
}
if l > 0 {
var fn *codecFn
var recognizedVtyp = useLookupRecognizedTypes && isRecognizedRtidOrPtr(rt2id(rtelem))
if !recognizedVtyp {
for rtelem.Kind() == reflect.Ptr {
rtelem = rtelem.Elem()
}
// if kind is reflect.Interface, do not pre-determine the
// encoding type, because preEncodeValue may break it down to
// a concrete type and kInterface will bomb.
if rtelem.Kind() != reflect.Interface {
fn = e.cf.get(rtelem, true, true)
}
}
// TODO: Consider perf implication of encoding odd index values as symbols if type is string
for j := 0; j < l; j++ {
if elemsep {
if ti.mbs {
if j%2 == 0 {
ee.WriteMapElemKey()
} else {
ee.WriteMapElemValue()
}
} else {
ee.WriteArrayElem()
}
}
if f.seq == seqTypeChan {
if rv2, ok2 := rv.Recv(); ok2 {
if useLookupRecognizedTypes && recognizedVtyp {
e.encode(rv2i(rv2))
} else {
e.encodeValue(rv2, fn, true)
}
} else {
ee.EncodeNil() // WE HAVE TO DO SOMETHING, so nil if nothing received.
}
} else {
if useLookupRecognizedTypes && recognizedVtyp {
e.encode(rv2i(rv.Index(j)))
} else {
e.encodeValue(rv.Index(j), fn, true)
}
}
}
}
if ti.mbs {
ee.WriteMapEnd()
} else {
ee.WriteArrayEnd()
}
}
func (e *Encoder) kStructNoOmitempty(f *codecFnInfo, rv reflect.Value) {
fti := f.ti
elemsep := e.hh.hasElemSeparators()
tisfi := fti.sfip
toMap := !(fti.toArray || e.h.StructToArray)
if toMap {
tisfi = fti.sfi
}
ee := e.e
sfn := structFieldNode{v: rv, update: false}
if toMap {
ee.WriteMapStart(len(tisfi))
// asSymbols := e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
asSymbols := e.h.AsSymbols == AsSymbolDefault || e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
if !elemsep {
for _, si := range tisfi {
if asSymbols {
ee.EncodeSymbol(si.encName)
} else {
ee.EncodeString(c_UTF8, si.encName)
}
e.encodeValue(sfn.field(si), nil, true)
}
} else {
for _, si := range tisfi {
ee.WriteMapElemKey()
if asSymbols {
ee.EncodeSymbol(si.encName)
} else {
ee.EncodeString(c_UTF8, si.encName)
}
ee.WriteMapElemValue()
e.encodeValue(sfn.field(si), nil, true)
}
}
ee.WriteMapEnd()
} else {
ee.WriteArrayStart(len(tisfi))
if !elemsep {
for _, si := range tisfi {
e.encodeValue(sfn.field(si), nil, true)
}
} else {
for _, si := range tisfi {
ee.WriteArrayElem()
e.encodeValue(sfn.field(si), nil, true)
}
}
ee.WriteArrayEnd()
}
}
func (e *Encoder) kStruct(f *codecFnInfo, rv reflect.Value) {
fti := f.ti
elemsep := e.hh.hasElemSeparators()
tisfi := fti.sfip
toMap := !(fti.toArray || e.h.StructToArray)
// if toMap, use the sorted array. If toArray, use unsorted array (to match sequence in struct)
if toMap {
tisfi = fti.sfi
}
newlen := len(fti.sfi)
ee := e.e
// Use sync.Pool to reduce allocating slices unnecessarily.
// The cost of sync.Pool is less than the cost of new allocation.
//
// Each element of the array pools one of encStructPool(8|16|32|64).
// It allows the re-use of slices up to 64 in length.
// A performance cost of encoding structs was collecting
// which values were empty and should be omitted.
// We needed slices of reflect.Value and string to collect them.
// This shared pool reduces the amount of unnecessary creation we do.
// The cost is that of locking sometimes, but sync.Pool is efficient
// enough to reduce thread contention.
var spool *sync.Pool
var poolv interface{}
var fkvs []stringRv
if newlen <= 8 {
spool, poolv = pool.stringRv8()
fkvs = poolv.(*[8]stringRv)[:newlen]
} else if newlen <= 16 {
spool, poolv = pool.stringRv16()
fkvs = poolv.(*[16]stringRv)[:newlen]
} else if newlen <= 32 {
spool, poolv = pool.stringRv32()
fkvs = poolv.(*[32]stringRv)[:newlen]
} else if newlen <= 64 {
spool, poolv = pool.stringRv64()
fkvs = poolv.(*[64]stringRv)[:newlen]
} else if newlen <= 128 {
spool, poolv = pool.stringRv128()
fkvs = poolv.(*[128]stringRv)[:newlen]
} else {
fkvs = make([]stringRv, newlen)
}
newlen = 0
var kv stringRv
recur := e.h.RecursiveEmptyCheck
sfn := structFieldNode{v: rv, update: false}
for _, si := range tisfi {
// kv.r = si.field(rv, false)
kv.r = sfn.field(si)
if toMap {
if si.omitEmpty && isEmptyValue(kv.r, recur, recur) {
continue
}
kv.v = si.encName
} else {
// use the zero value.
// if a reference or struct, set to nil (so you do not output too much)
if si.omitEmpty && isEmptyValue(kv.r, recur, recur) {
switch kv.r.Kind() {
case reflect.Struct, reflect.Interface, reflect.Ptr, reflect.Array, reflect.Map, reflect.Slice:
kv.r = reflect.Value{} //encode as nil
}
}
}
fkvs[newlen] = kv
newlen++
}
if toMap {
ee.WriteMapStart(newlen)
// asSymbols := e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
asSymbols := e.h.AsSymbols == AsSymbolDefault || e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
if !elemsep {
for j := 0; j < newlen; j++ {
kv = fkvs[j]
if asSymbols {
ee.EncodeSymbol(kv.v)
} else {
ee.EncodeString(c_UTF8, kv.v)
}
e.encodeValue(kv.r, nil, true)
}
} else {
for j := 0; j < newlen; j++ {
kv = fkvs[j]
ee.WriteMapElemKey()
if asSymbols {
ee.EncodeSymbol(kv.v)
} else {
ee.EncodeString(c_UTF8, kv.v)
}
ee.WriteMapElemValue()
e.encodeValue(kv.r, nil, true)
}
}
ee.WriteMapEnd()
} else {
ee.WriteArrayStart(newlen)
if !elemsep {
for j := 0; j < newlen; j++ {
e.encodeValue(fkvs[j].r, nil, true)
}
} else {
for j := 0; j < newlen; j++ {
ee.WriteArrayElem()
e.encodeValue(fkvs[j].r, nil, true)
}
}
ee.WriteArrayEnd()
}
// do not use defer. Instead, use explicit pool return at end of function.
// defer has a cost we are trying to avoid.
// If there is a panic and these slices are not returned, it is ok.
if spool != nil {
spool.Put(poolv)
}
}
func (e *Encoder) kMap(f *codecFnInfo, rv reflect.Value) {
ee := e.e
if rv.IsNil() {
ee.EncodeNil()
return
}
l := rv.Len()
ee.WriteMapStart(l)
elemsep := e.hh.hasElemSeparators()
if l == 0 {
ee.WriteMapEnd()
return
}
var asSymbols bool
// determine the underlying key and val encFn's for the map.
// This eliminates some work which is done for each loop iteration i.e.
// rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
//
// However, if kind is reflect.Interface, do not pre-determine the
// encoding type, because preEncodeValue may break it down to
// a concrete type and kInterface will bomb.
var keyFn, valFn *codecFn
ti := f.ti
rtkey0 := ti.rt.Key()
rtkey := rtkey0
rtval0 := ti.rt.Elem()
rtval := rtval0
rtkeyid := rt2id(rtkey0)
rtvalid := rt2id(rtval0)
for rtval.Kind() == reflect.Ptr {
rtval = rtval.Elem()
}
if rtval.Kind() != reflect.Interface {
valFn = e.cf.get(rtval, true, true)
}
mks := rv.MapKeys()
if e.h.Canonical {
e.kMapCanonical(rtkey, rv, mks, valFn, asSymbols)
ee.WriteMapEnd()
return
}
var recognizedKtyp, recognizedVtyp bool
var keyTypeIsString = rtkeyid == stringTypId
if keyTypeIsString {
asSymbols = e.h.AsSymbols&AsSymbolMapStringKeysFlag != 0
} else {
if useLookupRecognizedTypes {
if recognizedKtyp = isRecognizedRtidOrPtr(rtkeyid); recognizedKtyp {
goto LABEL1
}
}
for rtkey.Kind() == reflect.Ptr {
rtkey = rtkey.Elem()
}
if rtkey.Kind() != reflect.Interface {
rtkeyid = rt2id(rtkey)
keyFn = e.cf.get(rtkey, true, true)
}
}
// for j, lmks := 0, len(mks); j < lmks; j++ {
LABEL1:
recognizedVtyp = useLookupRecognizedTypes && isRecognizedRtidOrPtr(rtvalid)
for j := range mks {
if elemsep {
ee.WriteMapElemKey()
}
if keyTypeIsString {
if asSymbols {
ee.EncodeSymbol(mks[j].String())
} else {
ee.EncodeString(c_UTF8, mks[j].String())
}
} else if useLookupRecognizedTypes && recognizedKtyp {
e.encode(rv2i(mks[j]))
} else {
e.encodeValue(mks[j], keyFn, true)
}
if elemsep {
ee.WriteMapElemValue()
}
if useLookupRecognizedTypes && recognizedVtyp {
e.encode(rv2i(rv.MapIndex(mks[j])))
} else {
e.encodeValue(rv.MapIndex(mks[j]), valFn, true)
}
}
ee.WriteMapEnd()
}
func (e *Encoder) kMapCanonical(rtkey reflect.Type, rv reflect.Value, mks []reflect.Value, valFn *codecFn, asSymbols bool) {
ee := e.e
elemsep := e.hh.hasElemSeparators()
// we previously did out-of-band if an extension was registered.
// This is not necessary, as the natural kind is sufficient for ordering.
// WHAT IS THIS? rtkeyid can never be a []uint8, per spec
// if rtkeyid == uint8SliceTypId {
// mksv := make([]bytesRv, len(mks))
// for i, k := range mks {
// v := &mksv[i]
// v.r = k
// v.v = k.Bytes()
// }
// sort.Sort(bytesRvSlice(mksv))
// for i := range mksv {
// if elemsep {
// ee.WriteMapElemKey()
// }
// ee.EncodeStringBytes(c_RAW, mksv[i].v)
// if elemsep {
// ee.WriteMapElemValue()
// }
// e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
// }
// return
// }
switch rtkey.Kind() {
case reflect.Bool:
mksv := make([]boolRv, len(mks))
for i, k := range mks {
v := &mksv[i]
v.r = k
v.v = k.Bool()
}
sort.Sort(boolRvSlice(mksv))
for i := range mksv {
if elemsep {
ee.WriteMapElemKey()
}
ee.EncodeBool(mksv[i].v)
if elemsep {
ee.WriteMapElemValue()
}
e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
}
case reflect.String:
mksv := make([]stringRv, len(mks))
for i, k := range mks {
v := &mksv[i]
v.r = k
v.v = k.String()
}
sort.Sort(stringRvSlice(mksv))
for i := range mksv {
if elemsep {
ee.WriteMapElemKey()
}
if asSymbols {
ee.EncodeSymbol(mksv[i].v)
} else {
ee.EncodeString(c_UTF8, mksv[i].v)
}
if elemsep {
ee.WriteMapElemValue()
}
e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
}
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint, reflect.Uintptr:
mksv := make([]uintRv, len(mks))
for i, k := range mks {
v := &mksv[i]
v.r = k
v.v = k.Uint()
}
sort.Sort(uintRvSlice(mksv))
for i := range mksv {
if elemsep {
ee.WriteMapElemKey()
}
ee.EncodeUint(mksv[i].v)
if elemsep {
ee.WriteMapElemValue()
}
e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
}
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
mksv := make([]intRv, len(mks))
for i, k := range mks {
v := &mksv[i]
v.r = k
v.v = k.Int()
}
sort.Sort(intRvSlice(mksv))
for i := range mksv {
if elemsep {
ee.WriteMapElemKey()
}
ee.EncodeInt(mksv[i].v)
if elemsep {
ee.WriteMapElemValue()
}
e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
}
case reflect.Float32:
mksv := make([]floatRv, len(mks))
for i, k := range mks {
v := &mksv[i]
v.r = k
v.v = k.Float()
}
sort.Sort(floatRvSlice(mksv))
for i := range mksv {
if elemsep {
ee.WriteMapElemKey()
}
ee.EncodeFloat32(float32(mksv[i].v))
if elemsep {
ee.WriteMapElemValue()
}
e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
}
case reflect.Float64:
mksv := make([]floatRv, len(mks))
for i, k := range mks {
v := &mksv[i]
v.r = k
v.v = k.Float()
}
sort.Sort(floatRvSlice(mksv))
for i := range mksv {
if elemsep {
ee.WriteMapElemKey()
}
ee.EncodeFloat64(mksv[i].v)
if elemsep {
ee.WriteMapElemValue()
}
e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
}
default:
// out-of-band
// first encode each key to a []byte first, then sort them, then record
var mksv []byte = make([]byte, 0, len(mks)*16) // temporary byte slice for the encoding
e2 := NewEncoderBytes(&mksv, e.hh)
mksbv := make([]bytesRv, len(mks))
for i, k := range mks {
v := &mksbv[i]
l := len(mksv)
e2.MustEncode(k)
v.r = k
v.v = mksv[l:]
}
sort.Sort(bytesRvSlice(mksbv))
for j := range mksbv {
if elemsep {
ee.WriteMapElemKey()
}
e.asis(mksbv[j].v)
if elemsep {
ee.WriteMapElemValue()
}
e.encodeValue(rv.MapIndex(mksbv[j].r), valFn, true)
}
}
}
// // --------------------------------------------------
// An Encoder writes an object to an output stream in the codec format.
type Encoder struct {
// hopefully, reduce derefencing cost by laying the encWriter inside the Encoder
e encDriver
// NOTE: Encoder shouldn't call it's write methods,
// as the handler MAY need to do some coordination.
w encWriter
hh Handle
h *BasicHandle
// ---- cpu cache line boundary?
wi ioEncWriter
wb bytesEncWriter
bw bufio.Writer
// cr containerStateRecv
as encDriverAsis
// ---- cpu cache line boundary?
ci set
err error
b [scratchByteArrayLen]byte
cf codecFner
}
// NewEncoder returns an Encoder for encoding into an io.Writer.
//
// For efficiency, Users are encouraged to pass in a memory buffered writer
// (eg bufio.Writer, bytes.Buffer).
func NewEncoder(w io.Writer, h Handle) *Encoder {
e := newEncoder(h)
e.Reset(w)
return e
}
// NewEncoderBytes returns an encoder for encoding directly and efficiently
// into a byte slice, using zero-copying to temporary slices.
//
// It will potentially replace the output byte slice pointed to.
// After encoding, the out parameter contains the encoded contents.
func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
e := newEncoder(h)
e.ResetBytes(out)
return e
}
func newEncoder(h Handle) *Encoder {
e := &Encoder{hh: h, h: h.getBasicHandle()}
e.e = h.newEncDriver(e)
e.as, _ = e.e.(encDriverAsis)
// e.cr, _ = e.e.(containerStateRecv)
return e
}
// Reset the Encoder with a new output stream.
//
// This accommodates using the state of the Encoder,
// where it has "cached" information about sub-engines.
func (e *Encoder) Reset(w io.Writer) {
var ok bool
e.wi.w = w
if e.h.WriterBufferSize > 0 {
bw := bufio.NewWriterSize(w, e.h.WriterBufferSize)
e.bw = *bw
e.wi.bw = &e.bw
e.wi.sw = &e.bw
e.wi.fw = &e.bw
e.wi.ww = &e.bw
} else {
if e.wi.bw, ok = w.(io.ByteWriter); !ok {
e.wi.bw = &e.wi
}
if e.wi.sw, ok = w.(ioEncStringWriter); !ok {
e.wi.sw = &e.wi
}
e.wi.fw, _ = w.(ioEncFlusher)
e.wi.ww = w
}
e.w = &e.wi
e.e.reset()
e.cf.reset(e.hh)
e.err = nil
}
func (e *Encoder) ResetBytes(out *[]byte) {
in := *out
if in == nil {
in = make([]byte, defEncByteBufSize)
}
e.wb.b, e.wb.out, e.wb.c = in, out, 0
e.w = &e.wb
e.e.reset()
e.cf.reset(e.hh)
e.err = nil
}
// Encode writes an object into a stream.
//
// Encoding can be configured via the struct tag for the fields.
// The "codec" key in struct field's tag value is the key name,
// followed by an optional comma and options.
// Note that the "json" key is used in the absence of the "codec" key.
//
// To set an option on all fields (e.g. omitempty on all fields), you
// can create a field called _struct, and set flags on it.
//
// Struct values "usually" encode as maps. Each exported struct field is encoded unless:
// - the field's tag is "-", OR
// - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
//
// When encoding as a map, the first string in the tag (before the comma)
// is the map key string to use when encoding.
//
// However, struct values may encode as arrays. This happens when:
// - StructToArray Encode option is set, OR
// - the tag on the _struct field sets the "toarray" option
// Note that omitempty is ignored when encoding struct values as arrays,
// as an entry must be encoded for each field, to maintain its position.
//
// Values with types that implement MapBySlice are encoded as stream maps.
//
// The empty values (for omitempty option) are false, 0, any nil pointer
// or interface value, and any array, slice, map, or string of length zero.
//
// Anonymous fields are encoded inline except:
// - the struct tag specifies a replacement name (first value)
// - the field is of an interface type
//
// Examples:
//
// // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
// type MyStruct struct {
// _struct bool `codec:",omitempty"` //set omitempty for every field
// Field1 string `codec:"-"` //skip this field
// Field2 int `codec:"myName"` //Use key "myName" in encode stream
// Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty.
// Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty.
// io.Reader //use key "Reader".
// MyStruct `codec:"my1" //use key "my1".
// MyStruct //inline it
// ...
// }
//
// type MyStruct struct {
// _struct bool `codec:",toarray"` //encode struct as an array
// }
//
// The mode of encoding is based on the type of the value. When a value is seen:
// - If a Selfer, call its CodecEncodeSelf method
// - If an extension is registered for it, call that extension function
// - If it implements encoding.(Binary|Text|JSON)Marshaler, call its Marshal(Binary|Text|JSON) method
// - Else encode it based on its reflect.Kind
//
// Note that struct field names and keys in map[string]XXX will be treated as symbols.
// Some formats support symbols (e.g. binc) and will properly encode the string
// only once in the stream, and use a tag to refer to it thereafter.
func (e *Encoder) Encode(v interface{}) (err error) {
defer panicToErrs2(&e.err, &err)
e.MustEncode(v)
return
}
// MustEncode is like Encode, but panics if unable to Encode.
// This provides insight to the code location that triggered the error.
func (e *Encoder) MustEncode(v interface{}) {
if e.err != nil {
panic(e.err)
}
e.encode(v)
e.e.atEndOfEncode()
e.w.atEndOfEncode()
}
func (e *Encoder) encode(iv interface{}) {
if iv == nil || definitelyNil(iv) {
e.e.EncodeNil()
return
}
if v, ok := iv.(Selfer); ok {
v.CodecEncodeSelf(e)
return
}
switch v := iv.(type) {
// case nil:
// e.e.EncodeNil()
// case Selfer:
// v.CodecEncodeSelf(e)
case Raw:
e.rawBytes(v)
case reflect.Value:
e.encodeValue(v, nil, true)
case string:
e.e.EncodeString(c_UTF8, v)
case bool:
e.e.EncodeBool(v)
case int:
e.e.EncodeInt(int64(v))
case int8:
e.e.EncodeInt(int64(v))
case int16:
e.e.EncodeInt(int64(v))
case int32:
e.e.EncodeInt(int64(v))
case int64:
e.e.EncodeInt(v)
case uint:
e.e.EncodeUint(uint64(v))
case uint8:
e.e.EncodeUint(uint64(v))
case uint16:
e.e.EncodeUint(uint64(v))
case uint32:
e.e.EncodeUint(uint64(v))
case uint64:
e.e.EncodeUint(v)
case uintptr:
e.e.EncodeUint(uint64(v))
case float32:
e.e.EncodeFloat32(v)
case float64:
e.e.EncodeFloat64(v)
case []uint8:
e.e.EncodeStringBytes(c_RAW, v)
case *string:
e.e.EncodeString(c_UTF8, *v)
case *bool:
e.e.EncodeBool(*v)
case *int:
e.e.EncodeInt(int64(*v))
case *int8:
e.e.EncodeInt(int64(*v))
case *int16:
e.e.EncodeInt(int64(*v))
case *int32:
e.e.EncodeInt(int64(*v))
case *int64:
e.e.EncodeInt(*v)
case *uint:
e.e.EncodeUint(uint64(*v))
case *uint8:
e.e.EncodeUint(uint64(*v))
case *uint16:
e.e.EncodeUint(uint64(*v))
case *uint32:
e.e.EncodeUint(uint64(*v))
case *uint64:
e.e.EncodeUint(*v)
case *uintptr:
e.e.EncodeUint(uint64(*v))
case *float32:
e.e.EncodeFloat32(*v)
case *float64:
e.e.EncodeFloat64(*v)
case *[]uint8:
e.e.EncodeStringBytes(c_RAW, *v)
default:
if !fastpathEncodeTypeSwitch(iv, e) {
e.encodeValue(reflect.ValueOf(iv), nil, false)
}
}
}
func (e *Encoder) encodeValue(rv reflect.Value, fn *codecFn, checkFastpath bool) {
// if a valid fn is passed, it MUST BE for the dereferenced type of rv
var sptr uintptr
TOP:
switch rv.Kind() {
case reflect.Ptr:
if rv.IsNil() {
e.e.EncodeNil()
return
}
rv = rv.Elem()
if e.h.CheckCircularRef && rv.Kind() == reflect.Struct {
// TODO: Movable pointers will be an issue here. Future problem.
sptr = rv.UnsafeAddr()
break TOP
}
goto TOP
case reflect.Interface:
if rv.IsNil() {
e.e.EncodeNil()
return
}
rv = rv.Elem()
goto TOP
case reflect.Slice, reflect.Map:
if rv.IsNil() {
e.e.EncodeNil()
return
}
case reflect.Invalid, reflect.Func:
e.e.EncodeNil()
return
}
if sptr != 0 && (&e.ci).add(sptr) {
e.errorf("circular reference found: # %d", sptr)
}
if fn == nil {
rt := rv.Type()
// TODO: calling isRecognizedRtid here is a major slowdown
if false && useLookupRecognizedTypes && isRecognizedRtidOrPtr(rt2id(rt)) {
e.encode(rv2i(rv))
return
}
// always pass checkCodecSelfer=true, in case T or ****T is passed, where *T is a Selfer
fn = e.cf.get(rt, checkFastpath, true)
}
fn.fe(e, &fn.i, rv)
if sptr != 0 {
(&e.ci).remove(sptr)
}
}
func (e *Encoder) marshal(bs []byte, fnerr error, asis bool, c charEncoding) {
if fnerr != nil {
panic(fnerr)
}
if bs == nil {
e.e.EncodeNil()
} else if asis {
e.asis(bs)
} else {
e.e.EncodeStringBytes(c, bs)
}
}
func (e *Encoder) asis(v []byte) {
if e.as == nil {
e.w.writeb(v)
} else {
e.as.EncodeAsis(v)
}
}
func (e *Encoder) rawBytes(vv Raw) {
v := []byte(vv)
if !e.h.Raw {
e.errorf("Raw values cannot be encoded: %v", v)
}
if e.as == nil {
e.w.writeb(v)
} else {
e.as.EncodeAsis(v)
}
}
func (e *Encoder) errorf(format string, params ...interface{}) {
err := fmt.Errorf(format, params...)
panic(err)
}