mirror of https://github.com/k3s-io/k3s
77 lines
2.0 KiB
Go
77 lines
2.0 KiB
Go
// Copyright ©2015 The Gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package gonum
|
|
|
|
import (
|
|
"math"
|
|
|
|
"gonum.org/v1/gonum/blas"
|
|
"gonum.org/v1/gonum/blas/blas64"
|
|
)
|
|
|
|
// Dpocon estimates the reciprocal of the condition number of a positive-definite
|
|
// matrix A given the Cholesky decomposition of A. The condition number computed
|
|
// is based on the 1-norm and the ∞-norm.
|
|
//
|
|
// anorm is the 1-norm and the ∞-norm of the original matrix A.
|
|
//
|
|
// work is a temporary data slice of length at least 3*n and Dpocon will panic otherwise.
|
|
//
|
|
// iwork is a temporary data slice of length at least n and Dpocon will panic otherwise.
|
|
func (impl Implementation) Dpocon(uplo blas.Uplo, n int, a []float64, lda int, anorm float64, work []float64, iwork []int) float64 {
|
|
checkMatrix(n, n, a, lda)
|
|
if uplo != blas.Upper && uplo != blas.Lower {
|
|
panic(badUplo)
|
|
}
|
|
if len(work) < 3*n {
|
|
panic(badWork)
|
|
}
|
|
if len(iwork) < n {
|
|
panic(badWork)
|
|
}
|
|
var rcond float64
|
|
if n == 0 {
|
|
return 1
|
|
}
|
|
if anorm == 0 {
|
|
return rcond
|
|
}
|
|
|
|
bi := blas64.Implementation()
|
|
var ainvnm float64
|
|
smlnum := dlamchS
|
|
upper := uplo == blas.Upper
|
|
var kase int
|
|
var normin bool
|
|
isave := new([3]int)
|
|
var sl, su float64
|
|
for {
|
|
ainvnm, kase = impl.Dlacn2(n, work[n:], work, iwork, ainvnm, kase, isave)
|
|
if kase == 0 {
|
|
if ainvnm != 0 {
|
|
rcond = (1 / ainvnm) / anorm
|
|
}
|
|
return rcond
|
|
}
|
|
if upper {
|
|
sl = impl.Dlatrs(blas.Upper, blas.Trans, blas.NonUnit, normin, n, a, lda, work, work[2*n:])
|
|
normin = true
|
|
su = impl.Dlatrs(blas.Upper, blas.NoTrans, blas.NonUnit, normin, n, a, lda, work, work[2*n:])
|
|
} else {
|
|
sl = impl.Dlatrs(blas.Lower, blas.NoTrans, blas.NonUnit, normin, n, a, lda, work, work[2*n:])
|
|
normin = true
|
|
su = impl.Dlatrs(blas.Lower, blas.Trans, blas.NonUnit, normin, n, a, lda, work, work[2*n:])
|
|
}
|
|
scale := sl * su
|
|
if scale != 1 {
|
|
ix := bi.Idamax(n, work, 1)
|
|
if scale == 0 || scale < math.Abs(work[ix])*smlnum {
|
|
return rcond
|
|
}
|
|
impl.Drscl(n, scale, work, 1)
|
|
}
|
|
}
|
|
}
|