k3s/vendor/go.etcd.io/etcd/mvcc/kvstore.go

625 lines
16 KiB
Go

// Copyright 2015 The etcd Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package mvcc
import (
"context"
"encoding/binary"
"errors"
"fmt"
"hash/crc32"
"math"
"sync"
"sync/atomic"
"time"
"go.etcd.io/etcd/lease"
"go.etcd.io/etcd/mvcc/backend"
"go.etcd.io/etcd/mvcc/mvccpb"
"go.etcd.io/etcd/pkg/schedule"
"go.etcd.io/etcd/pkg/traceutil"
"github.com/coreos/pkg/capnslog"
"go.uber.org/zap"
)
var (
keyBucketName = []byte("key")
metaBucketName = []byte("meta")
consistentIndexKeyName = []byte("consistent_index")
scheduledCompactKeyName = []byte("scheduledCompactRev")
finishedCompactKeyName = []byte("finishedCompactRev")
ErrCompacted = errors.New("mvcc: required revision has been compacted")
ErrFutureRev = errors.New("mvcc: required revision is a future revision")
ErrCanceled = errors.New("mvcc: watcher is canceled")
ErrClosed = errors.New("mvcc: closed")
plog = capnslog.NewPackageLogger("go.etcd.io/etcd", "mvcc")
)
const (
// markedRevBytesLen is the byte length of marked revision.
// The first `revBytesLen` bytes represents a normal revision. The last
// one byte is the mark.
markedRevBytesLen = revBytesLen + 1
markBytePosition = markedRevBytesLen - 1
markTombstone byte = 't'
)
var restoreChunkKeys = 10000 // non-const for testing
var defaultCompactBatchLimit = 1000
// ConsistentIndexGetter is an interface that wraps the Get method.
// Consistent index is the offset of an entry in a consistent replicated log.
type ConsistentIndexGetter interface {
// ConsistentIndex returns the consistent index of current executing entry.
ConsistentIndex() uint64
}
type StoreConfig struct {
CompactionBatchLimit int
}
type store struct {
ReadView
WriteView
// consistentIndex caches the "consistent_index" key's value. Accessed
// through atomics so must be 64-bit aligned.
consistentIndex uint64
cfg StoreConfig
// mu read locks for txns and write locks for non-txn store changes.
mu sync.RWMutex
ig ConsistentIndexGetter
b backend.Backend
kvindex index
le lease.Lessor
// revMuLock protects currentRev and compactMainRev.
// Locked at end of write txn and released after write txn unlock lock.
// Locked before locking read txn and released after locking.
revMu sync.RWMutex
// currentRev is the revision of the last completed transaction.
currentRev int64
// compactMainRev is the main revision of the last compaction.
compactMainRev int64
// bytesBuf8 is a byte slice of length 8
// to avoid a repetitive allocation in saveIndex.
bytesBuf8 []byte
fifoSched schedule.Scheduler
stopc chan struct{}
lg *zap.Logger
}
// NewStore returns a new store. It is useful to create a store inside
// mvcc pkg. It should only be used for testing externally.
func NewStore(lg *zap.Logger, b backend.Backend, le lease.Lessor, ig ConsistentIndexGetter, cfg StoreConfig) *store {
if cfg.CompactionBatchLimit == 0 {
cfg.CompactionBatchLimit = defaultCompactBatchLimit
}
s := &store{
cfg: cfg,
b: b,
ig: ig,
kvindex: newTreeIndex(lg),
le: le,
currentRev: 1,
compactMainRev: -1,
bytesBuf8: make([]byte, 8),
fifoSched: schedule.NewFIFOScheduler(),
stopc: make(chan struct{}),
lg: lg,
}
s.ReadView = &readView{s}
s.WriteView = &writeView{s}
if s.le != nil {
s.le.SetRangeDeleter(func() lease.TxnDelete { return s.Write(traceutil.TODO()) })
}
tx := s.b.BatchTx()
tx.Lock()
tx.UnsafeCreateBucket(keyBucketName)
tx.UnsafeCreateBucket(metaBucketName)
tx.Unlock()
s.b.ForceCommit()
s.mu.Lock()
defer s.mu.Unlock()
if err := s.restore(); err != nil {
// TODO: return the error instead of panic here?
panic("failed to recover store from backend")
}
return s
}
func (s *store) compactBarrier(ctx context.Context, ch chan struct{}) {
if ctx == nil || ctx.Err() != nil {
select {
case <-s.stopc:
default:
// fix deadlock in mvcc,for more information, please refer to pr 11817.
// s.stopc is only updated in restore operation, which is called by apply
// snapshot call, compaction and apply snapshot requests are serialized by
// raft, and do not happen at the same time.
s.mu.Lock()
f := func(ctx context.Context) { s.compactBarrier(ctx, ch) }
s.fifoSched.Schedule(f)
s.mu.Unlock()
}
return
}
close(ch)
}
func (s *store) Hash() (hash uint32, revision int64, err error) {
start := time.Now()
s.b.ForceCommit()
h, err := s.b.Hash(DefaultIgnores)
hashSec.Observe(time.Since(start).Seconds())
return h, s.currentRev, err
}
func (s *store) HashByRev(rev int64) (hash uint32, currentRev int64, compactRev int64, err error) {
start := time.Now()
s.mu.RLock()
s.revMu.RLock()
compactRev, currentRev = s.compactMainRev, s.currentRev
s.revMu.RUnlock()
if rev > 0 && rev <= compactRev {
s.mu.RUnlock()
return 0, 0, compactRev, ErrCompacted
} else if rev > 0 && rev > currentRev {
s.mu.RUnlock()
return 0, currentRev, 0, ErrFutureRev
}
if rev == 0 {
rev = currentRev
}
keep := s.kvindex.Keep(rev)
tx := s.b.ReadTx()
tx.RLock()
defer tx.RUnlock()
s.mu.RUnlock()
upper := revision{main: rev + 1}
lower := revision{main: compactRev + 1}
h := crc32.New(crc32.MakeTable(crc32.Castagnoli))
h.Write(keyBucketName)
err = tx.UnsafeForEach(keyBucketName, func(k, v []byte) error {
kr := bytesToRev(k)
if !upper.GreaterThan(kr) {
return nil
}
// skip revisions that are scheduled for deletion
// due to compacting; don't skip if there isn't one.
if lower.GreaterThan(kr) && len(keep) > 0 {
if _, ok := keep[kr]; !ok {
return nil
}
}
h.Write(k)
h.Write(v)
return nil
})
hash = h.Sum32()
hashRevSec.Observe(time.Since(start).Seconds())
return hash, currentRev, compactRev, err
}
func (s *store) updateCompactRev(rev int64) (<-chan struct{}, error) {
s.revMu.Lock()
if rev <= s.compactMainRev {
ch := make(chan struct{})
f := func(ctx context.Context) { s.compactBarrier(ctx, ch) }
s.fifoSched.Schedule(f)
s.revMu.Unlock()
return ch, ErrCompacted
}
if rev > s.currentRev {
s.revMu.Unlock()
return nil, ErrFutureRev
}
s.compactMainRev = rev
rbytes := newRevBytes()
revToBytes(revision{main: rev}, rbytes)
tx := s.b.BatchTx()
tx.Lock()
tx.UnsafePut(metaBucketName, scheduledCompactKeyName, rbytes)
tx.Unlock()
// ensure that desired compaction is persisted
s.b.ForceCommit()
s.revMu.Unlock()
return nil, nil
}
func (s *store) compact(trace *traceutil.Trace, rev int64) (<-chan struct{}, error) {
ch := make(chan struct{})
var j = func(ctx context.Context) {
if ctx.Err() != nil {
s.compactBarrier(ctx, ch)
return
}
start := time.Now()
keep := s.kvindex.Compact(rev)
indexCompactionPauseMs.Observe(float64(time.Since(start) / time.Millisecond))
if !s.scheduleCompaction(rev, keep) {
s.compactBarrier(nil, ch)
return
}
close(ch)
}
s.fifoSched.Schedule(j)
trace.Step("schedule compaction")
return ch, nil
}
func (s *store) compactLockfree(rev int64) (<-chan struct{}, error) {
ch, err := s.updateCompactRev(rev)
if nil != err {
return ch, err
}
return s.compact(traceutil.TODO(), rev)
}
func (s *store) Compact(trace *traceutil.Trace, rev int64) (<-chan struct{}, error) {
s.mu.Lock()
ch, err := s.updateCompactRev(rev)
trace.Step("check and update compact revision")
if err != nil {
s.mu.Unlock()
return ch, err
}
s.mu.Unlock()
return s.compact(trace, rev)
}
// DefaultIgnores is a map of keys to ignore in hash checking.
var DefaultIgnores map[backend.IgnoreKey]struct{}
func init() {
DefaultIgnores = map[backend.IgnoreKey]struct{}{
// consistent index might be changed due to v2 internal sync, which
// is not controllable by the user.
{Bucket: string(metaBucketName), Key: string(consistentIndexKeyName)}: {},
}
}
func (s *store) Commit() {
s.mu.Lock()
defer s.mu.Unlock()
tx := s.b.BatchTx()
tx.Lock()
s.saveIndex(tx)
tx.Unlock()
s.b.ForceCommit()
}
func (s *store) Restore(b backend.Backend) error {
s.mu.Lock()
defer s.mu.Unlock()
close(s.stopc)
s.fifoSched.Stop()
atomic.StoreUint64(&s.consistentIndex, 0)
s.b = b
s.kvindex = newTreeIndex(s.lg)
s.currentRev = 1
s.compactMainRev = -1
s.fifoSched = schedule.NewFIFOScheduler()
s.stopc = make(chan struct{})
return s.restore()
}
func (s *store) restore() error {
s.setupMetricsReporter()
min, max := newRevBytes(), newRevBytes()
revToBytes(revision{main: 1}, min)
revToBytes(revision{main: math.MaxInt64, sub: math.MaxInt64}, max)
keyToLease := make(map[string]lease.LeaseID)
// restore index
tx := s.b.BatchTx()
tx.Lock()
_, finishedCompactBytes := tx.UnsafeRange(metaBucketName, finishedCompactKeyName, nil, 0)
if len(finishedCompactBytes) != 0 {
s.compactMainRev = bytesToRev(finishedCompactBytes[0]).main
if s.lg != nil {
s.lg.Info(
"restored last compact revision",
zap.String("meta-bucket-name", string(metaBucketName)),
zap.String("meta-bucket-name-key", string(finishedCompactKeyName)),
zap.Int64("restored-compact-revision", s.compactMainRev),
)
} else {
plog.Printf("restore compact to %d", s.compactMainRev)
}
}
_, scheduledCompactBytes := tx.UnsafeRange(metaBucketName, scheduledCompactKeyName, nil, 0)
scheduledCompact := int64(0)
if len(scheduledCompactBytes) != 0 {
scheduledCompact = bytesToRev(scheduledCompactBytes[0]).main
}
// index keys concurrently as they're loaded in from tx
keysGauge.Set(0)
rkvc, revc := restoreIntoIndex(s.lg, s.kvindex)
for {
keys, vals := tx.UnsafeRange(keyBucketName, min, max, int64(restoreChunkKeys))
if len(keys) == 0 {
break
}
// rkvc blocks if the total pending keys exceeds the restore
// chunk size to keep keys from consuming too much memory.
restoreChunk(s.lg, rkvc, keys, vals, keyToLease)
if len(keys) < restoreChunkKeys {
// partial set implies final set
break
}
// next set begins after where this one ended
newMin := bytesToRev(keys[len(keys)-1][:revBytesLen])
newMin.sub++
revToBytes(newMin, min)
}
close(rkvc)
s.currentRev = <-revc
// keys in the range [compacted revision -N, compaction] might all be deleted due to compaction.
// the correct revision should be set to compaction revision in the case, not the largest revision
// we have seen.
if s.currentRev < s.compactMainRev {
s.currentRev = s.compactMainRev
}
if scheduledCompact <= s.compactMainRev {
scheduledCompact = 0
}
for key, lid := range keyToLease {
if s.le == nil {
panic("no lessor to attach lease")
}
err := s.le.Attach(lid, []lease.LeaseItem{{Key: key}})
if err != nil {
if s.lg != nil {
s.lg.Warn(
"failed to attach a lease",
zap.String("lease-id", fmt.Sprintf("%016x", lid)),
zap.Error(err),
)
} else {
plog.Errorf("unexpected Attach error: %v", err)
}
}
}
tx.Unlock()
if scheduledCompact != 0 {
s.compactLockfree(scheduledCompact)
if s.lg != nil {
s.lg.Info(
"resume scheduled compaction",
zap.String("meta-bucket-name", string(metaBucketName)),
zap.String("meta-bucket-name-key", string(scheduledCompactKeyName)),
zap.Int64("scheduled-compact-revision", scheduledCompact),
)
} else {
plog.Printf("resume scheduled compaction at %d", scheduledCompact)
}
}
return nil
}
type revKeyValue struct {
key []byte
kv mvccpb.KeyValue
kstr string
}
func restoreIntoIndex(lg *zap.Logger, idx index) (chan<- revKeyValue, <-chan int64) {
rkvc, revc := make(chan revKeyValue, restoreChunkKeys), make(chan int64, 1)
go func() {
currentRev := int64(1)
defer func() { revc <- currentRev }()
// restore the tree index from streaming the unordered index.
kiCache := make(map[string]*keyIndex, restoreChunkKeys)
for rkv := range rkvc {
ki, ok := kiCache[rkv.kstr]
// purge kiCache if many keys but still missing in the cache
if !ok && len(kiCache) >= restoreChunkKeys {
i := 10
for k := range kiCache {
delete(kiCache, k)
if i--; i == 0 {
break
}
}
}
// cache miss, fetch from tree index if there
if !ok {
ki = &keyIndex{key: rkv.kv.Key}
if idxKey := idx.KeyIndex(ki); idxKey != nil {
kiCache[rkv.kstr], ki = idxKey, idxKey
ok = true
}
}
rev := bytesToRev(rkv.key)
currentRev = rev.main
if ok {
if isTombstone(rkv.key) {
ki.tombstone(lg, rev.main, rev.sub)
continue
}
ki.put(lg, rev.main, rev.sub)
} else if !isTombstone(rkv.key) {
ki.restore(lg, revision{rkv.kv.CreateRevision, 0}, rev, rkv.kv.Version)
idx.Insert(ki)
kiCache[rkv.kstr] = ki
}
}
}()
return rkvc, revc
}
func restoreChunk(lg *zap.Logger, kvc chan<- revKeyValue, keys, vals [][]byte, keyToLease map[string]lease.LeaseID) {
for i, key := range keys {
rkv := revKeyValue{key: key}
if err := rkv.kv.Unmarshal(vals[i]); err != nil {
if lg != nil {
lg.Fatal("failed to unmarshal mvccpb.KeyValue", zap.Error(err))
} else {
plog.Fatalf("cannot unmarshal event: %v", err)
}
}
rkv.kstr = string(rkv.kv.Key)
if isTombstone(key) {
delete(keyToLease, rkv.kstr)
} else if lid := lease.LeaseID(rkv.kv.Lease); lid != lease.NoLease {
keyToLease[rkv.kstr] = lid
} else {
delete(keyToLease, rkv.kstr)
}
kvc <- rkv
}
}
func (s *store) Close() error {
close(s.stopc)
s.fifoSched.Stop()
return nil
}
func (s *store) saveIndex(tx backend.BatchTx) {
if s.ig == nil {
return
}
bs := s.bytesBuf8
ci := s.ig.ConsistentIndex()
binary.BigEndian.PutUint64(bs, ci)
// put the index into the underlying backend
// tx has been locked in TxnBegin, so there is no need to lock it again
tx.UnsafePut(metaBucketName, consistentIndexKeyName, bs)
atomic.StoreUint64(&s.consistentIndex, ci)
}
func (s *store) ConsistentIndex() uint64 {
if ci := atomic.LoadUint64(&s.consistentIndex); ci > 0 {
return ci
}
tx := s.b.BatchTx()
tx.Lock()
defer tx.Unlock()
_, vs := tx.UnsafeRange(metaBucketName, consistentIndexKeyName, nil, 0)
if len(vs) == 0 {
return 0
}
v := binary.BigEndian.Uint64(vs[0])
atomic.StoreUint64(&s.consistentIndex, v)
return v
}
func (s *store) setupMetricsReporter() {
b := s.b
reportDbTotalSizeInBytesMu.Lock()
reportDbTotalSizeInBytes = func() float64 { return float64(b.Size()) }
reportDbTotalSizeInBytesMu.Unlock()
reportDbTotalSizeInBytesDebugMu.Lock()
reportDbTotalSizeInBytesDebug = func() float64 { return float64(b.Size()) }
reportDbTotalSizeInBytesDebugMu.Unlock()
reportDbTotalSizeInUseInBytesMu.Lock()
reportDbTotalSizeInUseInBytes = func() float64 { return float64(b.SizeInUse()) }
reportDbTotalSizeInUseInBytesMu.Unlock()
reportDbOpenReadTxNMu.Lock()
reportDbOpenReadTxN = func() float64 { return float64(b.OpenReadTxN()) }
reportDbOpenReadTxNMu.Unlock()
reportCurrentRevMu.Lock()
reportCurrentRev = func() float64 {
s.revMu.RLock()
defer s.revMu.RUnlock()
return float64(s.currentRev)
}
reportCurrentRevMu.Unlock()
reportCompactRevMu.Lock()
reportCompactRev = func() float64 {
s.revMu.RLock()
defer s.revMu.RUnlock()
return float64(s.compactMainRev)
}
reportCompactRevMu.Unlock()
}
// appendMarkTombstone appends tombstone mark to normal revision bytes.
func appendMarkTombstone(lg *zap.Logger, b []byte) []byte {
if len(b) != revBytesLen {
if lg != nil {
lg.Panic(
"cannot append tombstone mark to non-normal revision bytes",
zap.Int("expected-revision-bytes-size", revBytesLen),
zap.Int("given-revision-bytes-size", len(b)),
)
} else {
plog.Panicf("cannot append mark to non normal revision bytes")
}
}
return append(b, markTombstone)
}
// isTombstone checks whether the revision bytes is a tombstone.
func isTombstone(b []byte) bool {
return len(b) == markedRevBytesLen && b[markBytePosition] == markTombstone
}