k3s/vendor/gonum.org/v1/gonum/lapack/gonum/dlahqr.go

432 lines
13 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"math"
"gonum.org/v1/gonum/blas/blas64"
)
// Dlahqr computes the eigenvalues and Schur factorization of a block of an n×n
// upper Hessenberg matrix H, using the double-shift/single-shift QR algorithm.
//
// h and ldh represent the matrix H. Dlahqr works primarily with the Hessenberg
// submatrix H[ilo:ihi+1,ilo:ihi+1], but applies transformations to all of H if
// wantt is true. It is assumed that H[ihi+1:n,ihi+1:n] is already upper
// quasi-triangular, although this is not checked.
//
// It must hold that
// 0 <= ilo <= max(0,ihi), and ihi < n,
// and that
// H[ilo,ilo-1] == 0, if ilo > 0,
// otherwise Dlahqr will panic.
//
// If unconverged is zero on return, wr[ilo:ihi+1] and wi[ilo:ihi+1] will contain
// respectively the real and imaginary parts of the computed eigenvalues ilo
// to ihi. If two eigenvalues are computed as a complex conjugate pair, they are
// stored in consecutive elements of wr and wi, say the i-th and (i+1)th, with
// wi[i] > 0 and wi[i+1] < 0. If wantt is true, the eigenvalues are stored in
// the same order as on the diagonal of the Schur form returned in H, with
// wr[i] = H[i,i], and, if H[i:i+2,i:i+2] is a 2×2 diagonal block,
// wi[i] = sqrt(abs(H[i+1,i]*H[i,i+1])) and wi[i+1] = -wi[i].
//
// wr and wi must have length ihi+1.
//
// z and ldz represent an n×n matrix Z. If wantz is true, the transformations
// will be applied to the submatrix Z[iloz:ihiz+1,ilo:ihi+1] and it must hold that
// 0 <= iloz <= ilo, and ihi <= ihiz < n.
// If wantz is false, z is not referenced.
//
// unconverged indicates whether Dlahqr computed all the eigenvalues ilo to ihi
// in a total of 30 iterations per eigenvalue.
//
// If unconverged is zero, all the eigenvalues ilo to ihi have been computed and
// will be stored on return in wr[ilo:ihi+1] and wi[ilo:ihi+1].
//
// If unconverged is zero and wantt is true, H[ilo:ihi+1,ilo:ihi+1] will be
// overwritten on return by upper quasi-triangular full Schur form with any
// 2×2 diagonal blocks in standard form.
//
// If unconverged is zero and if wantt is false, the contents of h on return is
// unspecified.
//
// If unconverged is positive, some eigenvalues have not converged, and
// wr[unconverged:ihi+1] and wi[unconverged:ihi+1] contain those eigenvalues
// which have been successfully computed.
//
// If unconverged is positive and wantt is true, then on return
// (initial H)*U = U*(final H), (*)
// where U is an orthogonal matrix. The final H is upper Hessenberg and
// H[unconverged:ihi+1,unconverged:ihi+1] is upper quasi-triangular.
//
// If unconverged is positive and wantt is false, on return the remaining
// unconverged eigenvalues are the eigenvalues of the upper Hessenberg matrix
// H[ilo:unconverged,ilo:unconverged].
//
// If unconverged is positive and wantz is true, then on return
// (final Z) = (initial Z)*U,
// where U is the orthogonal matrix in (*) regardless of the value of wantt.
//
// Dlahqr is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dlahqr(wantt, wantz bool, n, ilo, ihi int, h []float64, ldh int, wr, wi []float64, iloz, ihiz int, z []float64, ldz int) (unconverged int) {
switch {
case n < 0:
panic(nLT0)
case ilo < 0, max(0, ihi) < ilo:
panic(badIlo)
case ihi >= n:
panic(badIhi)
case ldh < max(1, n):
panic(badLdH)
case wantz && (iloz < 0 || ilo < iloz):
panic(badIloz)
case wantz && (ihiz < ihi || n <= ihiz):
panic(badIhiz)
case ldz < 1, wantz && ldz < n:
panic(badLdZ)
}
// Quick return if possible.
if n == 0 {
return 0
}
switch {
case len(h) < (n-1)*ldh+n:
panic(shortH)
case len(wr) != ihi+1:
panic(shortWr)
case len(wi) != ihi+1:
panic(shortWi)
case wantz && len(z) < (n-1)*ldz+n:
panic(shortZ)
case ilo > 0 && h[ilo*ldh+ilo-1] != 0:
panic(notIsolated)
}
if ilo == ihi {
wr[ilo] = h[ilo*ldh+ilo]
wi[ilo] = 0
return 0
}
// Clear out the trash.
for j := ilo; j < ihi-2; j++ {
h[(j+2)*ldh+j] = 0
h[(j+3)*ldh+j] = 0
}
if ilo <= ihi-2 {
h[ihi*ldh+ihi-2] = 0
}
nh := ihi - ilo + 1
nz := ihiz - iloz + 1
// Set machine-dependent constants for the stopping criterion.
ulp := dlamchP
smlnum := float64(nh) / ulp * dlamchS
// i1 and i2 are the indices of the first row and last column of H to
// which transformations must be applied. If eigenvalues only are being
// computed, i1 and i2 are set inside the main loop.
var i1, i2 int
if wantt {
i1 = 0
i2 = n - 1
}
itmax := 30 * max(10, nh) // Total number of QR iterations allowed.
// The main loop begins here. i is the loop index and decreases from ihi
// to ilo in steps of 1 or 2. Each iteration of the loop works with the
// active submatrix in rows and columns l to i. Eigenvalues i+1 to ihi
// have already converged. Either l = ilo or H[l,l-1] is negligible so
// that the matrix splits.
bi := blas64.Implementation()
i := ihi
for i >= ilo {
l := ilo
// Perform QR iterations on rows and columns ilo to i until a
// submatrix of order 1 or 2 splits off at the bottom because a
// subdiagonal element has become negligible.
converged := false
for its := 0; its <= itmax; its++ {
// Look for a single small subdiagonal element.
var k int
for k = i; k > l; k-- {
if math.Abs(h[k*ldh+k-1]) <= smlnum {
break
}
tst := math.Abs(h[(k-1)*ldh+k-1]) + math.Abs(h[k*ldh+k])
if tst == 0 {
if k-2 >= ilo {
tst += math.Abs(h[(k-1)*ldh+k-2])
}
if k+1 <= ihi {
tst += math.Abs(h[(k+1)*ldh+k])
}
}
// The following is a conservative small
// subdiagonal deflation criterion due to Ahues
// & Tisseur (LAWN 122, 1997). It has better
// mathematical foundation and improves accuracy
// in some cases.
if math.Abs(h[k*ldh+k-1]) <= ulp*tst {
ab := math.Max(math.Abs(h[k*ldh+k-1]), math.Abs(h[(k-1)*ldh+k]))
ba := math.Min(math.Abs(h[k*ldh+k-1]), math.Abs(h[(k-1)*ldh+k]))
aa := math.Max(math.Abs(h[k*ldh+k]), math.Abs(h[(k-1)*ldh+k-1]-h[k*ldh+k]))
bb := math.Min(math.Abs(h[k*ldh+k]), math.Abs(h[(k-1)*ldh+k-1]-h[k*ldh+k]))
s := aa + ab
if ab/s*ba <= math.Max(smlnum, aa/s*bb*ulp) {
break
}
}
}
l = k
if l > ilo {
// H[l,l-1] is negligible.
h[l*ldh+l-1] = 0
}
if l >= i-1 {
// Break the loop because a submatrix of order 1
// or 2 has split off.
converged = true
break
}
// Now the active submatrix is in rows and columns l to
// i. If eigenvalues only are being computed, only the
// active submatrix need be transformed.
if !wantt {
i1 = l
i2 = i
}
const (
dat1 = 3.0
dat2 = -0.4375
)
var h11, h21, h12, h22 float64
switch its {
case 10: // Exceptional shift.
s := math.Abs(h[(l+1)*ldh+l]) + math.Abs(h[(l+2)*ldh+l+1])
h11 = dat1*s + h[l*ldh+l]
h12 = dat2 * s
h21 = s
h22 = h11
case 20: // Exceptional shift.
s := math.Abs(h[i*ldh+i-1]) + math.Abs(h[(i-1)*ldh+i-2])
h11 = dat1*s + h[i*ldh+i]
h12 = dat2 * s
h21 = s
h22 = h11
default: // Prepare to use Francis' double shift (i.e.,
// 2nd degree generalized Rayleigh quotient).
h11 = h[(i-1)*ldh+i-1]
h21 = h[i*ldh+i-1]
h12 = h[(i-1)*ldh+i]
h22 = h[i*ldh+i]
}
s := math.Abs(h11) + math.Abs(h12) + math.Abs(h21) + math.Abs(h22)
var (
rt1r, rt1i float64
rt2r, rt2i float64
)
if s != 0 {
h11 /= s
h21 /= s
h12 /= s
h22 /= s
tr := (h11 + h22) / 2
det := (h11-tr)*(h22-tr) - h12*h21
rtdisc := math.Sqrt(math.Abs(det))
if det >= 0 {
// Complex conjugate shifts.
rt1r = tr * s
rt2r = rt1r
rt1i = rtdisc * s
rt2i = -rt1i
} else {
// Real shifts (use only one of them).
rt1r = tr + rtdisc
rt2r = tr - rtdisc
if math.Abs(rt1r-h22) <= math.Abs(rt2r-h22) {
rt1r *= s
rt2r = rt1r
} else {
rt2r *= s
rt1r = rt2r
}
rt1i = 0
rt2i = 0
}
}
// Look for two consecutive small subdiagonal elements.
var m int
var v [3]float64
for m = i - 2; m >= l; m-- {
// Determine the effect of starting the
// double-shift QR iteration at row m, and see
// if this would make H[m,m-1] negligible. The
// following uses scaling to avoid overflows and
// most underflows.
h21s := h[(m+1)*ldh+m]
s := math.Abs(h[m*ldh+m]-rt2r) + math.Abs(rt2i) + math.Abs(h21s)
h21s /= s
v[0] = h21s*h[m*ldh+m+1] + (h[m*ldh+m]-rt1r)*((h[m*ldh+m]-rt2r)/s) - rt2i/s*rt1i
v[1] = h21s * (h[m*ldh+m] + h[(m+1)*ldh+m+1] - rt1r - rt2r)
v[2] = h21s * h[(m+2)*ldh+m+1]
s = math.Abs(v[0]) + math.Abs(v[1]) + math.Abs(v[2])
v[0] /= s
v[1] /= s
v[2] /= s
if m == l {
break
}
dsum := math.Abs(h[(m-1)*ldh+m-1]) + math.Abs(h[m*ldh+m]) + math.Abs(h[(m+1)*ldh+m+1])
if math.Abs(h[m*ldh+m-1])*(math.Abs(v[1])+math.Abs(v[2])) <= ulp*math.Abs(v[0])*dsum {
break
}
}
// Double-shift QR step.
for k := m; k < i; k++ {
// The first iteration of this loop determines a
// reflection G from the vector V and applies it
// from left and right to H, thus creating a
// non-zero bulge below the subdiagonal.
//
// Each subsequent iteration determines a
// reflection G to restore the Hessenberg form
// in the (k-1)th column, and thus chases the
// bulge one step toward the bottom of the
// active submatrix. nr is the order of G.
nr := min(3, i-k+1)
if k > m {
bi.Dcopy(nr, h[k*ldh+k-1:], ldh, v[:], 1)
}
var t0 float64
v[0], t0 = impl.Dlarfg(nr, v[0], v[1:], 1)
if k > m {
h[k*ldh+k-1] = v[0]
h[(k+1)*ldh+k-1] = 0
if k < i-1 {
h[(k+2)*ldh+k-1] = 0
}
} else if m > l {
// Use the following instead of H[k,k-1] = -H[k,k-1]
// to avoid a bug when v[1] and v[2] underflow.
h[k*ldh+k-1] *= 1 - t0
}
t1 := t0 * v[1]
if nr == 3 {
t2 := t0 * v[2]
// Apply G from the left to transform
// the rows of the matrix in columns k
// to i2.
for j := k; j <= i2; j++ {
sum := h[k*ldh+j] + v[1]*h[(k+1)*ldh+j] + v[2]*h[(k+2)*ldh+j]
h[k*ldh+j] -= sum * t0
h[(k+1)*ldh+j] -= sum * t1
h[(k+2)*ldh+j] -= sum * t2
}
// Apply G from the right to transform
// the columns of the matrix in rows i1
// to min(k+3,i).
for j := i1; j <= min(k+3, i); j++ {
sum := h[j*ldh+k] + v[1]*h[j*ldh+k+1] + v[2]*h[j*ldh+k+2]
h[j*ldh+k] -= sum * t0
h[j*ldh+k+1] -= sum * t1
h[j*ldh+k+2] -= sum * t2
}
if wantz {
// Accumulate transformations in the matrix Z.
for j := iloz; j <= ihiz; j++ {
sum := z[j*ldz+k] + v[1]*z[j*ldz+k+1] + v[2]*z[j*ldz+k+2]
z[j*ldz+k] -= sum * t0
z[j*ldz+k+1] -= sum * t1
z[j*ldz+k+2] -= sum * t2
}
}
} else if nr == 2 {
// Apply G from the left to transform
// the rows of the matrix in columns k
// to i2.
for j := k; j <= i2; j++ {
sum := h[k*ldh+j] + v[1]*h[(k+1)*ldh+j]
h[k*ldh+j] -= sum * t0
h[(k+1)*ldh+j] -= sum * t1
}
// Apply G from the right to transform
// the columns of the matrix in rows i1
// to min(k+3,i).
for j := i1; j <= i; j++ {
sum := h[j*ldh+k] + v[1]*h[j*ldh+k+1]
h[j*ldh+k] -= sum * t0
h[j*ldh+k+1] -= sum * t1
}
if wantz {
// Accumulate transformations in the matrix Z.
for j := iloz; j <= ihiz; j++ {
sum := z[j*ldz+k] + v[1]*z[j*ldz+k+1]
z[j*ldz+k] -= sum * t0
z[j*ldz+k+1] -= sum * t1
}
}
}
}
}
if !converged {
// The QR iteration finished without splitting off a
// submatrix of order 1 or 2.
return i + 1
}
if l == i {
// H[i,i-1] is negligible: one eigenvalue has converged.
wr[i] = h[i*ldh+i]
wi[i] = 0
} else if l == i-1 {
// H[i-1,i-2] is negligible: a pair of eigenvalues have converged.
// Transform the 2×2 submatrix to standard Schur form,
// and compute and store the eigenvalues.
var cs, sn float64
a, b := h[(i-1)*ldh+i-1], h[(i-1)*ldh+i]
c, d := h[i*ldh+i-1], h[i*ldh+i]
a, b, c, d, wr[i-1], wi[i-1], wr[i], wi[i], cs, sn = impl.Dlanv2(a, b, c, d)
h[(i-1)*ldh+i-1], h[(i-1)*ldh+i] = a, b
h[i*ldh+i-1], h[i*ldh+i] = c, d
if wantt {
// Apply the transformation to the rest of H.
if i2 > i {
bi.Drot(i2-i, h[(i-1)*ldh+i+1:], 1, h[i*ldh+i+1:], 1, cs, sn)
}
bi.Drot(i-i1-1, h[i1*ldh+i-1:], ldh, h[i1*ldh+i:], ldh, cs, sn)
}
if wantz {
// Apply the transformation to Z.
bi.Drot(nz, z[iloz*ldz+i-1:], ldz, z[iloz*ldz+i:], ldz, cs, sn)
}
}
// Return to start of the main loop with new value of i.
i = l - 1
}
return 0
}