mirror of https://github.com/k3s-io/k3s
240 lines
6.3 KiB
Go
240 lines
6.3 KiB
Go
// Copyright ©2016 The Gonum Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package gonum
|
||
|
||
import (
|
||
"math"
|
||
|
||
"gonum.org/v1/gonum/blas/blas64"
|
||
"gonum.org/v1/gonum/lapack"
|
||
)
|
||
|
||
// Dgebal balances an n×n matrix A. Balancing consists of two stages, permuting
|
||
// and scaling. Both steps are optional and depend on the value of job.
|
||
//
|
||
// Permuting consists of applying a permutation matrix P such that the matrix
|
||
// that results from Pᵀ*A*P takes the upper block triangular form
|
||
// [ T1 X Y ]
|
||
// Pᵀ A P = [ 0 B Z ],
|
||
// [ 0 0 T2 ]
|
||
// where T1 and T2 are upper triangular matrices and B contains at least one
|
||
// nonzero off-diagonal element in each row and column. The indices ilo and ihi
|
||
// mark the starting and ending columns of the submatrix B. The eigenvalues of A
|
||
// isolated in the first 0 to ilo-1 and last ihi+1 to n-1 elements on the
|
||
// diagonal can be read off without any roundoff error.
|
||
//
|
||
// Scaling consists of applying a diagonal similarity transformation D such that
|
||
// D^{-1}*B*D has the 1-norm of each row and its corresponding column nearly
|
||
// equal. The output matrix is
|
||
// [ T1 X*D Y ]
|
||
// [ 0 inv(D)*B*D inv(D)*Z ].
|
||
// [ 0 0 T2 ]
|
||
// Scaling may reduce the 1-norm of the matrix, and improve the accuracy of
|
||
// the computed eigenvalues and/or eigenvectors.
|
||
//
|
||
// job specifies the operations that will be performed on A.
|
||
// If job is lapack.BalanceNone, Dgebal sets scale[i] = 1 for all i and returns ilo=0, ihi=n-1.
|
||
// If job is lapack.Permute, only permuting will be done.
|
||
// If job is lapack.Scale, only scaling will be done.
|
||
// If job is lapack.PermuteScale, both permuting and scaling will be done.
|
||
//
|
||
// On return, if job is lapack.Permute or lapack.PermuteScale, it will hold that
|
||
// A[i,j] == 0, for i > j and j ∈ {0, ..., ilo-1, ihi+1, ..., n-1}.
|
||
// If job is lapack.BalanceNone or lapack.Scale, or if n == 0, it will hold that
|
||
// ilo == 0 and ihi == n-1.
|
||
//
|
||
// On return, scale will contain information about the permutations and scaling
|
||
// factors applied to A. If π(j) denotes the index of the column interchanged
|
||
// with column j, and D[j,j] denotes the scaling factor applied to column j,
|
||
// then
|
||
// scale[j] == π(j), for j ∈ {0, ..., ilo-1, ihi+1, ..., n-1},
|
||
// == D[j,j], for j ∈ {ilo, ..., ihi}.
|
||
// scale must have length equal to n, otherwise Dgebal will panic.
|
||
//
|
||
// Dgebal is an internal routine. It is exported for testing purposes.
|
||
func (impl Implementation) Dgebal(job lapack.BalanceJob, n int, a []float64, lda int, scale []float64) (ilo, ihi int) {
|
||
switch {
|
||
case job != lapack.BalanceNone && job != lapack.Permute && job != lapack.Scale && job != lapack.PermuteScale:
|
||
panic(badBalanceJob)
|
||
case n < 0:
|
||
panic(nLT0)
|
||
case lda < max(1, n):
|
||
panic(badLdA)
|
||
}
|
||
|
||
ilo = 0
|
||
ihi = n - 1
|
||
|
||
if n == 0 {
|
||
return ilo, ihi
|
||
}
|
||
|
||
if len(scale) != n {
|
||
panic(shortScale)
|
||
}
|
||
|
||
if job == lapack.BalanceNone {
|
||
for i := range scale {
|
||
scale[i] = 1
|
||
}
|
||
return ilo, ihi
|
||
}
|
||
|
||
if len(a) < (n-1)*lda+n {
|
||
panic(shortA)
|
||
}
|
||
|
||
bi := blas64.Implementation()
|
||
swapped := true
|
||
|
||
if job == lapack.Scale {
|
||
goto scaling
|
||
}
|
||
|
||
// Permutation to isolate eigenvalues if possible.
|
||
//
|
||
// Search for rows isolating an eigenvalue and push them down.
|
||
for swapped {
|
||
swapped = false
|
||
rows:
|
||
for i := ihi; i >= 0; i-- {
|
||
for j := 0; j <= ihi; j++ {
|
||
if i == j {
|
||
continue
|
||
}
|
||
if a[i*lda+j] != 0 {
|
||
continue rows
|
||
}
|
||
}
|
||
// Row i has only zero off-diagonal elements in the
|
||
// block A[ilo:ihi+1,ilo:ihi+1].
|
||
scale[ihi] = float64(i)
|
||
if i != ihi {
|
||
bi.Dswap(ihi+1, a[i:], lda, a[ihi:], lda)
|
||
bi.Dswap(n, a[i*lda:], 1, a[ihi*lda:], 1)
|
||
}
|
||
if ihi == 0 {
|
||
scale[0] = 1
|
||
return ilo, ihi
|
||
}
|
||
ihi--
|
||
swapped = true
|
||
break
|
||
}
|
||
}
|
||
// Search for columns isolating an eigenvalue and push them left.
|
||
swapped = true
|
||
for swapped {
|
||
swapped = false
|
||
columns:
|
||
for j := ilo; j <= ihi; j++ {
|
||
for i := ilo; i <= ihi; i++ {
|
||
if i == j {
|
||
continue
|
||
}
|
||
if a[i*lda+j] != 0 {
|
||
continue columns
|
||
}
|
||
}
|
||
// Column j has only zero off-diagonal elements in the
|
||
// block A[ilo:ihi+1,ilo:ihi+1].
|
||
scale[ilo] = float64(j)
|
||
if j != ilo {
|
||
bi.Dswap(ihi+1, a[j:], lda, a[ilo:], lda)
|
||
bi.Dswap(n-ilo, a[j*lda+ilo:], 1, a[ilo*lda+ilo:], 1)
|
||
}
|
||
swapped = true
|
||
ilo++
|
||
break
|
||
}
|
||
}
|
||
|
||
scaling:
|
||
for i := ilo; i <= ihi; i++ {
|
||
scale[i] = 1
|
||
}
|
||
|
||
if job == lapack.Permute {
|
||
return ilo, ihi
|
||
}
|
||
|
||
// Balance the submatrix in rows ilo to ihi.
|
||
|
||
const (
|
||
// sclfac should be a power of 2 to avoid roundoff errors.
|
||
// Elements of scale are restricted to powers of sclfac,
|
||
// therefore the matrix will be only nearly balanced.
|
||
sclfac = 2
|
||
// factor determines the minimum reduction of the row and column
|
||
// norms that is considered non-negligible. It must be less than 1.
|
||
factor = 0.95
|
||
)
|
||
sfmin1 := dlamchS / dlamchP
|
||
sfmax1 := 1 / sfmin1
|
||
sfmin2 := sfmin1 * sclfac
|
||
sfmax2 := 1 / sfmin2
|
||
|
||
// Iterative loop for norm reduction.
|
||
var conv bool
|
||
for !conv {
|
||
conv = true
|
||
for i := ilo; i <= ihi; i++ {
|
||
c := bi.Dnrm2(ihi-ilo+1, a[ilo*lda+i:], lda)
|
||
r := bi.Dnrm2(ihi-ilo+1, a[i*lda+ilo:], 1)
|
||
ica := bi.Idamax(ihi+1, a[i:], lda)
|
||
ca := math.Abs(a[ica*lda+i])
|
||
ira := bi.Idamax(n-ilo, a[i*lda+ilo:], 1)
|
||
ra := math.Abs(a[i*lda+ilo+ira])
|
||
|
||
// Guard against zero c or r due to underflow.
|
||
if c == 0 || r == 0 {
|
||
continue
|
||
}
|
||
g := r / sclfac
|
||
f := 1.0
|
||
s := c + r
|
||
for c < g && math.Max(f, math.Max(c, ca)) < sfmax2 && math.Min(r, math.Min(g, ra)) > sfmin2 {
|
||
if math.IsNaN(c + f + ca + r + g + ra) {
|
||
// Panic if NaN to avoid infinite loop.
|
||
panic("lapack: NaN")
|
||
}
|
||
f *= sclfac
|
||
c *= sclfac
|
||
ca *= sclfac
|
||
g /= sclfac
|
||
r /= sclfac
|
||
ra /= sclfac
|
||
}
|
||
g = c / sclfac
|
||
for r <= g && math.Max(r, ra) < sfmax2 && math.Min(math.Min(f, c), math.Min(g, ca)) > sfmin2 {
|
||
f /= sclfac
|
||
c /= sclfac
|
||
ca /= sclfac
|
||
g /= sclfac
|
||
r *= sclfac
|
||
ra *= sclfac
|
||
}
|
||
|
||
if c+r >= factor*s {
|
||
// Reduction would be negligible.
|
||
continue
|
||
}
|
||
if f < 1 && scale[i] < 1 && f*scale[i] <= sfmin1 {
|
||
continue
|
||
}
|
||
if f > 1 && scale[i] > 1 && scale[i] >= sfmax1/f {
|
||
continue
|
||
}
|
||
|
||
// Now balance.
|
||
scale[i] *= f
|
||
bi.Dscal(n-ilo, 1/f, a[i*lda+ilo:], 1)
|
||
bi.Dscal(ihi+1, f, a[i:], lda)
|
||
conv = false
|
||
}
|
||
}
|
||
return ilo, ihi
|
||
}
|