mirror of https://github.com/k3s-io/k3s
315 lines
8.3 KiB
Go
315 lines
8.3 KiB
Go
// Copyright ©2014 The Gonum Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package gonum
|
||
|
||
import (
|
||
"runtime"
|
||
"sync"
|
||
|
||
"gonum.org/v1/gonum/blas"
|
||
"gonum.org/v1/gonum/internal/asm/f64"
|
||
)
|
||
|
||
// Dgemm performs one of the matrix-matrix operations
|
||
// C = alpha * A * B + beta * C
|
||
// C = alpha * A^T * B + beta * C
|
||
// C = alpha * A * B^T + beta * C
|
||
// C = alpha * A^T * B^T + beta * C
|
||
// where A is an m×k or k×m dense matrix, B is an n×k or k×n dense matrix, C is
|
||
// an m×n matrix, and alpha and beta are scalars. tA and tB specify whether A or
|
||
// B are transposed.
|
||
func (Implementation) Dgemm(tA, tB blas.Transpose, m, n, k int, alpha float64, a []float64, lda int, b []float64, ldb int, beta float64, c []float64, ldc int) {
|
||
switch tA {
|
||
default:
|
||
panic(badTranspose)
|
||
case blas.NoTrans, blas.Trans, blas.ConjTrans:
|
||
}
|
||
switch tB {
|
||
default:
|
||
panic(badTranspose)
|
||
case blas.NoTrans, blas.Trans, blas.ConjTrans:
|
||
}
|
||
if m < 0 {
|
||
panic(mLT0)
|
||
}
|
||
if n < 0 {
|
||
panic(nLT0)
|
||
}
|
||
if k < 0 {
|
||
panic(kLT0)
|
||
}
|
||
aTrans := tA == blas.Trans || tA == blas.ConjTrans
|
||
if aTrans {
|
||
if lda < max(1, m) {
|
||
panic(badLdA)
|
||
}
|
||
} else {
|
||
if lda < max(1, k) {
|
||
panic(badLdA)
|
||
}
|
||
}
|
||
bTrans := tB == blas.Trans || tB == blas.ConjTrans
|
||
if bTrans {
|
||
if ldb < max(1, k) {
|
||
panic(badLdB)
|
||
}
|
||
} else {
|
||
if ldb < max(1, n) {
|
||
panic(badLdB)
|
||
}
|
||
}
|
||
if ldc < max(1, n) {
|
||
panic(badLdC)
|
||
}
|
||
|
||
// Quick return if possible.
|
||
if m == 0 || n == 0 {
|
||
return
|
||
}
|
||
|
||
// For zero matrix size the following slice length checks are trivially satisfied.
|
||
if aTrans {
|
||
if len(a) < (k-1)*lda+m {
|
||
panic(shortA)
|
||
}
|
||
} else {
|
||
if len(a) < (m-1)*lda+k {
|
||
panic(shortA)
|
||
}
|
||
}
|
||
if bTrans {
|
||
if len(b) < (n-1)*ldb+k {
|
||
panic(shortB)
|
||
}
|
||
} else {
|
||
if len(b) < (k-1)*ldb+n {
|
||
panic(shortB)
|
||
}
|
||
}
|
||
if len(c) < (m-1)*ldc+n {
|
||
panic(shortC)
|
||
}
|
||
|
||
// Quick return if possible.
|
||
if (alpha == 0 || k == 0) && beta == 1 {
|
||
return
|
||
}
|
||
|
||
// scale c
|
||
if beta != 1 {
|
||
if beta == 0 {
|
||
for i := 0; i < m; i++ {
|
||
ctmp := c[i*ldc : i*ldc+n]
|
||
for j := range ctmp {
|
||
ctmp[j] = 0
|
||
}
|
||
}
|
||
} else {
|
||
for i := 0; i < m; i++ {
|
||
ctmp := c[i*ldc : i*ldc+n]
|
||
for j := range ctmp {
|
||
ctmp[j] *= beta
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
dgemmParallel(aTrans, bTrans, m, n, k, a, lda, b, ldb, c, ldc, alpha)
|
||
}
|
||
|
||
func dgemmParallel(aTrans, bTrans bool, m, n, k int, a []float64, lda int, b []float64, ldb int, c []float64, ldc int, alpha float64) {
|
||
// dgemmParallel computes a parallel matrix multiplication by partitioning
|
||
// a and b into sub-blocks, and updating c with the multiplication of the sub-block
|
||
// In all cases,
|
||
// A = [ A_11 A_12 ... A_1j
|
||
// A_21 A_22 ... A_2j
|
||
// ...
|
||
// A_i1 A_i2 ... A_ij]
|
||
//
|
||
// and same for B. All of the submatrix sizes are blockSize×blockSize except
|
||
// at the edges.
|
||
//
|
||
// In all cases, there is one dimension for each matrix along which
|
||
// C must be updated sequentially.
|
||
// Cij = \sum_k Aik Bki, (A * B)
|
||
// Cij = \sum_k Aki Bkj, (A^T * B)
|
||
// Cij = \sum_k Aik Bjk, (A * B^T)
|
||
// Cij = \sum_k Aki Bjk, (A^T * B^T)
|
||
//
|
||
// This code computes one {i, j} block sequentially along the k dimension,
|
||
// and computes all of the {i, j} blocks concurrently. This
|
||
// partitioning allows Cij to be updated in-place without race-conditions.
|
||
// Instead of launching a goroutine for each possible concurrent computation,
|
||
// a number of worker goroutines are created and channels are used to pass
|
||
// available and completed cases.
|
||
//
|
||
// http://alexkr.com/docs/matrixmult.pdf is a good reference on matrix-matrix
|
||
// multiplies, though this code does not copy matrices to attempt to eliminate
|
||
// cache misses.
|
||
|
||
maxKLen := k
|
||
parBlocks := blocks(m, blockSize) * blocks(n, blockSize)
|
||
if parBlocks < minParBlock {
|
||
// The matrix multiplication is small in the dimensions where it can be
|
||
// computed concurrently. Just do it in serial.
|
||
dgemmSerial(aTrans, bTrans, m, n, k, a, lda, b, ldb, c, ldc, alpha)
|
||
return
|
||
}
|
||
|
||
nWorkers := runtime.GOMAXPROCS(0)
|
||
if parBlocks < nWorkers {
|
||
nWorkers = parBlocks
|
||
}
|
||
// There is a tradeoff between the workers having to wait for work
|
||
// and a large buffer making operations slow.
|
||
buf := buffMul * nWorkers
|
||
if buf > parBlocks {
|
||
buf = parBlocks
|
||
}
|
||
|
||
sendChan := make(chan subMul, buf)
|
||
|
||
// Launch workers. A worker receives an {i, j} submatrix of c, and computes
|
||
// A_ik B_ki (or the transposed version) storing the result in c_ij. When the
|
||
// channel is finally closed, it signals to the waitgroup that it has finished
|
||
// computing.
|
||
var wg sync.WaitGroup
|
||
for i := 0; i < nWorkers; i++ {
|
||
wg.Add(1)
|
||
go func() {
|
||
defer wg.Done()
|
||
for sub := range sendChan {
|
||
i := sub.i
|
||
j := sub.j
|
||
leni := blockSize
|
||
if i+leni > m {
|
||
leni = m - i
|
||
}
|
||
lenj := blockSize
|
||
if j+lenj > n {
|
||
lenj = n - j
|
||
}
|
||
|
||
cSub := sliceView64(c, ldc, i, j, leni, lenj)
|
||
|
||
// Compute A_ik B_kj for all k
|
||
for k := 0; k < maxKLen; k += blockSize {
|
||
lenk := blockSize
|
||
if k+lenk > maxKLen {
|
||
lenk = maxKLen - k
|
||
}
|
||
var aSub, bSub []float64
|
||
if aTrans {
|
||
aSub = sliceView64(a, lda, k, i, lenk, leni)
|
||
} else {
|
||
aSub = sliceView64(a, lda, i, k, leni, lenk)
|
||
}
|
||
if bTrans {
|
||
bSub = sliceView64(b, ldb, j, k, lenj, lenk)
|
||
} else {
|
||
bSub = sliceView64(b, ldb, k, j, lenk, lenj)
|
||
}
|
||
dgemmSerial(aTrans, bTrans, leni, lenj, lenk, aSub, lda, bSub, ldb, cSub, ldc, alpha)
|
||
}
|
||
}
|
||
}()
|
||
}
|
||
|
||
// Send out all of the {i, j} subblocks for computation.
|
||
for i := 0; i < m; i += blockSize {
|
||
for j := 0; j < n; j += blockSize {
|
||
sendChan <- subMul{
|
||
i: i,
|
||
j: j,
|
||
}
|
||
}
|
||
}
|
||
close(sendChan)
|
||
wg.Wait()
|
||
}
|
||
|
||
// dgemmSerial is serial matrix multiply
|
||
func dgemmSerial(aTrans, bTrans bool, m, n, k int, a []float64, lda int, b []float64, ldb int, c []float64, ldc int, alpha float64) {
|
||
switch {
|
||
case !aTrans && !bTrans:
|
||
dgemmSerialNotNot(m, n, k, a, lda, b, ldb, c, ldc, alpha)
|
||
return
|
||
case aTrans && !bTrans:
|
||
dgemmSerialTransNot(m, n, k, a, lda, b, ldb, c, ldc, alpha)
|
||
return
|
||
case !aTrans && bTrans:
|
||
dgemmSerialNotTrans(m, n, k, a, lda, b, ldb, c, ldc, alpha)
|
||
return
|
||
case aTrans && bTrans:
|
||
dgemmSerialTransTrans(m, n, k, a, lda, b, ldb, c, ldc, alpha)
|
||
return
|
||
default:
|
||
panic("unreachable")
|
||
}
|
||
}
|
||
|
||
// dgemmSerial where neither a nor b are transposed
|
||
func dgemmSerialNotNot(m, n, k int, a []float64, lda int, b []float64, ldb int, c []float64, ldc int, alpha float64) {
|
||
// This style is used instead of the literal [i*stride +j]) is used because
|
||
// approximately 5 times faster as of go 1.3.
|
||
for i := 0; i < m; i++ {
|
||
ctmp := c[i*ldc : i*ldc+n]
|
||
for l, v := range a[i*lda : i*lda+k] {
|
||
tmp := alpha * v
|
||
if tmp != 0 {
|
||
f64.AxpyUnitary(tmp, b[l*ldb:l*ldb+n], ctmp)
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// dgemmSerial where neither a is transposed and b is not
|
||
func dgemmSerialTransNot(m, n, k int, a []float64, lda int, b []float64, ldb int, c []float64, ldc int, alpha float64) {
|
||
// This style is used instead of the literal [i*stride +j]) is used because
|
||
// approximately 5 times faster as of go 1.3.
|
||
for l := 0; l < k; l++ {
|
||
btmp := b[l*ldb : l*ldb+n]
|
||
for i, v := range a[l*lda : l*lda+m] {
|
||
tmp := alpha * v
|
||
if tmp != 0 {
|
||
ctmp := c[i*ldc : i*ldc+n]
|
||
f64.AxpyUnitary(tmp, btmp, ctmp)
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// dgemmSerial where neither a is not transposed and b is
|
||
func dgemmSerialNotTrans(m, n, k int, a []float64, lda int, b []float64, ldb int, c []float64, ldc int, alpha float64) {
|
||
// This style is used instead of the literal [i*stride +j]) is used because
|
||
// approximately 5 times faster as of go 1.3.
|
||
for i := 0; i < m; i++ {
|
||
atmp := a[i*lda : i*lda+k]
|
||
ctmp := c[i*ldc : i*ldc+n]
|
||
for j := 0; j < n; j++ {
|
||
ctmp[j] += alpha * f64.DotUnitary(atmp, b[j*ldb:j*ldb+k])
|
||
}
|
||
}
|
||
}
|
||
|
||
// dgemmSerial where both are transposed
|
||
func dgemmSerialTransTrans(m, n, k int, a []float64, lda int, b []float64, ldb int, c []float64, ldc int, alpha float64) {
|
||
// This style is used instead of the literal [i*stride +j]) is used because
|
||
// approximately 5 times faster as of go 1.3.
|
||
for l := 0; l < k; l++ {
|
||
for i, v := range a[l*lda : l*lda+m] {
|
||
tmp := alpha * v
|
||
if tmp != 0 {
|
||
ctmp := c[i*ldc : i*ldc+n]
|
||
f64.AxpyInc(tmp, b[l:], ctmp, uintptr(n), uintptr(ldb), 1, 0, 0)
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
func sliceView64(a []float64, lda, i, j, r, c int) []float64 {
|
||
return a[i*lda+j : (i+r-1)*lda+j+c]
|
||
}
|