mirror of https://github.com/k3s-io/k3s
243 lines
5.8 KiB
Go
243 lines
5.8 KiB
Go
// Copyright ©2014 The gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package simple
|
|
|
|
import (
|
|
"fmt"
|
|
|
|
"golang.org/x/tools/container/intsets"
|
|
|
|
"k8s.io/kubernetes/third_party/forked/gonum/graph"
|
|
)
|
|
|
|
// UndirectedGraph implements a generalized undirected graph.
|
|
type UndirectedGraph struct {
|
|
nodes map[int]graph.Node
|
|
edges map[int]edgeHolder
|
|
|
|
self, absent float64
|
|
|
|
freeIDs intsets.Sparse
|
|
usedIDs intsets.Sparse
|
|
}
|
|
|
|
// NewUndirectedGraph returns an UndirectedGraph with the specified self and absent
|
|
// edge weight values.
|
|
func NewUndirectedGraph(self, absent float64) *UndirectedGraph {
|
|
return &UndirectedGraph{
|
|
nodes: make(map[int]graph.Node),
|
|
edges: make(map[int]edgeHolder),
|
|
|
|
self: self,
|
|
absent: absent,
|
|
}
|
|
}
|
|
|
|
// NewNodeID returns a new unique ID for a node to be added to g. The returned ID does
|
|
// not become a valid ID in g until it is added to g.
|
|
func (g *UndirectedGraph) NewNodeID() int {
|
|
if len(g.nodes) == 0 {
|
|
return 0
|
|
}
|
|
if len(g.nodes) == maxInt {
|
|
panic(fmt.Sprintf("simple: cannot allocate node: no slot"))
|
|
}
|
|
|
|
var id int
|
|
if g.freeIDs.Len() != 0 && g.freeIDs.TakeMin(&id) {
|
|
return id
|
|
}
|
|
if id = g.usedIDs.Max(); id < maxInt {
|
|
return id + 1
|
|
}
|
|
for id = 0; id < maxInt; id++ {
|
|
if !g.usedIDs.Has(id) {
|
|
return id
|
|
}
|
|
}
|
|
panic("unreachable")
|
|
}
|
|
|
|
// AddNode adds n to the graph. It panics if the added node ID matches an existing node ID.
|
|
func (g *UndirectedGraph) AddNode(n graph.Node) {
|
|
if _, exists := g.nodes[n.ID()]; exists {
|
|
panic(fmt.Sprintf("simple: node ID collision: %d", n.ID()))
|
|
}
|
|
g.nodes[n.ID()] = n
|
|
g.edges[n.ID()] = &sliceEdgeHolder{self: n.ID()}
|
|
|
|
g.freeIDs.Remove(n.ID())
|
|
g.usedIDs.Insert(n.ID())
|
|
}
|
|
|
|
// RemoveNode removes n from the graph, as well as any edges attached to it. If the node
|
|
// is not in the graph it is a no-op.
|
|
func (g *UndirectedGraph) RemoveNode(n graph.Node) {
|
|
if _, ok := g.nodes[n.ID()]; !ok {
|
|
return
|
|
}
|
|
delete(g.nodes, n.ID())
|
|
|
|
g.edges[n.ID()].Visit(func(neighbor int, edge graph.Edge) {
|
|
g.edges[neighbor] = g.edges[neighbor].Delete(n.ID())
|
|
})
|
|
delete(g.edges, n.ID())
|
|
|
|
g.freeIDs.Insert(n.ID())
|
|
g.usedIDs.Remove(n.ID())
|
|
|
|
}
|
|
|
|
// SetEdge adds e, an edge from one node to another. If the nodes do not exist, they are added.
|
|
// It will panic if the IDs of the e.From and e.To are equal.
|
|
func (g *UndirectedGraph) SetEdge(e graph.Edge) {
|
|
var (
|
|
from = e.From()
|
|
fid = from.ID()
|
|
to = e.To()
|
|
tid = to.ID()
|
|
)
|
|
|
|
if fid == tid {
|
|
panic("simple: adding self edge")
|
|
}
|
|
|
|
if !g.Has(from) {
|
|
g.AddNode(from)
|
|
}
|
|
if !g.Has(to) {
|
|
g.AddNode(to)
|
|
}
|
|
|
|
g.edges[fid] = g.edges[fid].Set(tid, e)
|
|
g.edges[tid] = g.edges[tid].Set(fid, e)
|
|
}
|
|
|
|
// RemoveEdge removes e from the graph, leaving the terminal nodes. If the edge does not exist
|
|
// it is a no-op.
|
|
func (g *UndirectedGraph) RemoveEdge(e graph.Edge) {
|
|
from, to := e.From(), e.To()
|
|
if _, ok := g.nodes[from.ID()]; !ok {
|
|
return
|
|
}
|
|
if _, ok := g.nodes[to.ID()]; !ok {
|
|
return
|
|
}
|
|
|
|
g.edges[from.ID()] = g.edges[from.ID()].Delete(to.ID())
|
|
g.edges[to.ID()] = g.edges[to.ID()].Delete(from.ID())
|
|
}
|
|
|
|
// Node returns the node in the graph with the given ID.
|
|
func (g *UndirectedGraph) Node(id int) graph.Node {
|
|
return g.nodes[id]
|
|
}
|
|
|
|
// Has returns whether the node exists within the graph.
|
|
func (g *UndirectedGraph) Has(n graph.Node) bool {
|
|
_, ok := g.nodes[n.ID()]
|
|
return ok
|
|
}
|
|
|
|
// Nodes returns all the nodes in the graph.
|
|
func (g *UndirectedGraph) Nodes() []graph.Node {
|
|
nodes := make([]graph.Node, len(g.nodes))
|
|
i := 0
|
|
for _, n := range g.nodes {
|
|
nodes[i] = n
|
|
i++
|
|
}
|
|
|
|
return nodes
|
|
}
|
|
|
|
// Edges returns all the edges in the graph.
|
|
func (g *UndirectedGraph) Edges() []graph.Edge {
|
|
var edges []graph.Edge
|
|
|
|
seen := make(map[[2]int]struct{})
|
|
for _, u := range g.edges {
|
|
u.Visit(func(neighbor int, e graph.Edge) {
|
|
uid := e.From().ID()
|
|
vid := e.To().ID()
|
|
if _, ok := seen[[2]int{uid, vid}]; ok {
|
|
return
|
|
}
|
|
seen[[2]int{uid, vid}] = struct{}{}
|
|
seen[[2]int{vid, uid}] = struct{}{}
|
|
edges = append(edges, e)
|
|
})
|
|
}
|
|
|
|
return edges
|
|
}
|
|
|
|
// From returns all nodes in g that can be reached directly from n.
|
|
func (g *UndirectedGraph) From(n graph.Node) []graph.Node {
|
|
if !g.Has(n) {
|
|
return nil
|
|
}
|
|
|
|
nodes := make([]graph.Node, g.edges[n.ID()].Len())
|
|
i := 0
|
|
g.edges[n.ID()].Visit(func(neighbor int, edge graph.Edge) {
|
|
nodes[i] = g.nodes[neighbor]
|
|
i++
|
|
})
|
|
|
|
return nodes
|
|
}
|
|
|
|
// HasEdgeBetween returns whether an edge exists between nodes x and y.
|
|
func (g *UndirectedGraph) HasEdgeBetween(x, y graph.Node) bool {
|
|
_, ok := g.edges[x.ID()].Get(y.ID())
|
|
return ok
|
|
}
|
|
|
|
// Edge returns the edge from u to v if such an edge exists and nil otherwise.
|
|
// The node v must be directly reachable from u as defined by the From method.
|
|
func (g *UndirectedGraph) Edge(u, v graph.Node) graph.Edge {
|
|
return g.EdgeBetween(u, v)
|
|
}
|
|
|
|
// EdgeBetween returns the edge between nodes x and y.
|
|
func (g *UndirectedGraph) EdgeBetween(x, y graph.Node) graph.Edge {
|
|
// We don't need to check if neigh exists because
|
|
// it's implicit in the edges access.
|
|
if !g.Has(x) {
|
|
return nil
|
|
}
|
|
|
|
edge, _ := g.edges[x.ID()].Get(y.ID())
|
|
return edge
|
|
}
|
|
|
|
// Weight returns the weight for the edge between x and y if Edge(x, y) returns a non-nil Edge.
|
|
// If x and y are the same node or there is no joining edge between the two nodes the weight
|
|
// value returned is either the graph's absent or self value. Weight returns true if an edge
|
|
// exists between x and y or if x and y have the same ID, false otherwise.
|
|
func (g *UndirectedGraph) Weight(x, y graph.Node) (w float64, ok bool) {
|
|
xid := x.ID()
|
|
yid := y.ID()
|
|
if xid == yid {
|
|
return g.self, true
|
|
}
|
|
if n, ok := g.edges[xid]; ok {
|
|
if e, ok := n.Get(yid); ok {
|
|
return e.Weight(), true
|
|
}
|
|
}
|
|
return g.absent, false
|
|
}
|
|
|
|
// Degree returns the degree of n in g.
|
|
func (g *UndirectedGraph) Degree(n graph.Node) int {
|
|
if _, ok := g.nodes[n.ID()]; !ok {
|
|
return 0
|
|
}
|
|
|
|
return g.edges[n.ID()].Len()
|
|
}
|