k3s/vendor/go.etcd.io/etcd/lease/lessor.go

939 lines
25 KiB
Go

// Copyright 2015 The etcd Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package lease
import (
"container/heap"
"context"
"encoding/binary"
"errors"
"math"
"sort"
"sync"
"time"
pb "go.etcd.io/etcd/etcdserver/etcdserverpb"
"go.etcd.io/etcd/lease/leasepb"
"go.etcd.io/etcd/mvcc/backend"
"go.uber.org/zap"
)
// NoLease is a special LeaseID representing the absence of a lease.
const NoLease = LeaseID(0)
// MaxLeaseTTL is the maximum lease TTL value
const MaxLeaseTTL = 9000000000
var (
forever = time.Time{}
leaseBucketName = []byte("lease")
// maximum number of leases to revoke per second; configurable for tests
leaseRevokeRate = 1000
// maximum number of lease checkpoints recorded to the consensus log per second; configurable for tests
leaseCheckpointRate = 1000
// the default interval of lease checkpoint
defaultLeaseCheckpointInterval = 5 * time.Minute
// maximum number of lease checkpoints to batch into a single consensus log entry
maxLeaseCheckpointBatchSize = 1000
// the default interval to check if the expired lease is revoked
defaultExpiredleaseRetryInterval = 3 * time.Second
ErrNotPrimary = errors.New("not a primary lessor")
ErrLeaseNotFound = errors.New("lease not found")
ErrLeaseExists = errors.New("lease already exists")
ErrLeaseTTLTooLarge = errors.New("too large lease TTL")
)
// TxnDelete is a TxnWrite that only permits deletes. Defined here
// to avoid circular dependency with mvcc.
type TxnDelete interface {
DeleteRange(key, end []byte) (n, rev int64)
End()
}
// RangeDeleter is a TxnDelete constructor.
type RangeDeleter func() TxnDelete
// Checkpointer permits checkpointing of lease remaining TTLs to the consensus log. Defined here to
// avoid circular dependency with mvcc.
type Checkpointer func(ctx context.Context, lc *pb.LeaseCheckpointRequest)
type LeaseID int64
// Lessor owns leases. It can grant, revoke, renew and modify leases for lessee.
type Lessor interface {
// SetRangeDeleter lets the lessor create TxnDeletes to the store.
// Lessor deletes the items in the revoked or expired lease by creating
// new TxnDeletes.
SetRangeDeleter(rd RangeDeleter)
SetCheckpointer(cp Checkpointer)
// Grant grants a lease that expires at least after TTL seconds.
Grant(id LeaseID, ttl int64) (*Lease, error)
// Revoke revokes a lease with given ID. The item attached to the
// given lease will be removed. If the ID does not exist, an error
// will be returned.
Revoke(id LeaseID) error
// Checkpoint applies the remainingTTL of a lease. The remainingTTL is used in Promote to set
// the expiry of leases to less than the full TTL when possible.
Checkpoint(id LeaseID, remainingTTL int64) error
// Attach attaches given leaseItem to the lease with given LeaseID.
// If the lease does not exist, an error will be returned.
Attach(id LeaseID, items []LeaseItem) error
// GetLease returns LeaseID for given item.
// If no lease found, NoLease value will be returned.
GetLease(item LeaseItem) LeaseID
// Detach detaches given leaseItem from the lease with given LeaseID.
// If the lease does not exist, an error will be returned.
Detach(id LeaseID, items []LeaseItem) error
// Promote promotes the lessor to be the primary lessor. Primary lessor manages
// the expiration and renew of leases.
// Newly promoted lessor renew the TTL of all lease to extend + previous TTL.
Promote(extend time.Duration)
// Demote demotes the lessor from being the primary lessor.
Demote()
// Renew renews a lease with given ID. It returns the renewed TTL. If the ID does not exist,
// an error will be returned.
Renew(id LeaseID) (int64, error)
// Lookup gives the lease at a given lease id, if any
Lookup(id LeaseID) *Lease
// Leases lists all leases.
Leases() []*Lease
// ExpiredLeasesC returns a chan that is used to receive expired leases.
ExpiredLeasesC() <-chan []*Lease
// Recover recovers the lessor state from the given backend and RangeDeleter.
Recover(b backend.Backend, rd RangeDeleter)
// Stop stops the lessor for managing leases. The behavior of calling Stop multiple
// times is undefined.
Stop()
}
// lessor implements Lessor interface.
// TODO: use clockwork for testability.
type lessor struct {
mu sync.RWMutex
// demotec is set when the lessor is the primary.
// demotec will be closed if the lessor is demoted.
demotec chan struct{}
leaseMap map[LeaseID]*Lease
leaseExpiredNotifier *LeaseExpiredNotifier
leaseCheckpointHeap LeaseQueue
itemMap map[LeaseItem]LeaseID
// When a lease expires, the lessor will delete the
// leased range (or key) by the RangeDeleter.
rd RangeDeleter
// When a lease's deadline should be persisted to preserve the remaining TTL across leader
// elections and restarts, the lessor will checkpoint the lease by the Checkpointer.
cp Checkpointer
// backend to persist leases. We only persist lease ID and expiry for now.
// The leased items can be recovered by iterating all the keys in kv.
b backend.Backend
// minLeaseTTL is the minimum lease TTL that can be granted for a lease. Any
// requests for shorter TTLs are extended to the minimum TTL.
minLeaseTTL int64
expiredC chan []*Lease
// stopC is a channel whose closure indicates that the lessor should be stopped.
stopC chan struct{}
// doneC is a channel whose closure indicates that the lessor is stopped.
doneC chan struct{}
lg *zap.Logger
// Wait duration between lease checkpoints.
checkpointInterval time.Duration
// the interval to check if the expired lease is revoked
expiredLeaseRetryInterval time.Duration
}
type LessorConfig struct {
MinLeaseTTL int64
CheckpointInterval time.Duration
ExpiredLeasesRetryInterval time.Duration
}
func NewLessor(lg *zap.Logger, b backend.Backend, cfg LessorConfig) Lessor {
return newLessor(lg, b, cfg)
}
func newLessor(lg *zap.Logger, b backend.Backend, cfg LessorConfig) *lessor {
checkpointInterval := cfg.CheckpointInterval
expiredLeaseRetryInterval := cfg.ExpiredLeasesRetryInterval
if checkpointInterval == 0 {
checkpointInterval = defaultLeaseCheckpointInterval
}
if expiredLeaseRetryInterval == 0 {
expiredLeaseRetryInterval = defaultExpiredleaseRetryInterval
}
l := &lessor{
leaseMap: make(map[LeaseID]*Lease),
itemMap: make(map[LeaseItem]LeaseID),
leaseExpiredNotifier: newLeaseExpiredNotifier(),
leaseCheckpointHeap: make(LeaseQueue, 0),
b: b,
minLeaseTTL: cfg.MinLeaseTTL,
checkpointInterval: checkpointInterval,
expiredLeaseRetryInterval: expiredLeaseRetryInterval,
// expiredC is a small buffered chan to avoid unnecessary blocking.
expiredC: make(chan []*Lease, 16),
stopC: make(chan struct{}),
doneC: make(chan struct{}),
lg: lg,
}
l.initAndRecover()
go l.runLoop()
return l
}
// isPrimary indicates if this lessor is the primary lessor. The primary
// lessor manages lease expiration and renew.
//
// in etcd, raft leader is the primary. Thus there might be two primary
// leaders at the same time (raft allows concurrent leader but with different term)
// for at most a leader election timeout.
// The old primary leader cannot affect the correctness since its proposal has a
// smaller term and will not be committed.
//
// TODO: raft follower do not forward lease management proposals. There might be a
// very small window (within second normally which depends on go scheduling) that
// a raft follow is the primary between the raft leader demotion and lessor demotion.
// Usually this should not be a problem. Lease should not be that sensitive to timing.
func (le *lessor) isPrimary() bool {
return le.demotec != nil
}
func (le *lessor) SetRangeDeleter(rd RangeDeleter) {
le.mu.Lock()
defer le.mu.Unlock()
le.rd = rd
}
func (le *lessor) SetCheckpointer(cp Checkpointer) {
le.mu.Lock()
defer le.mu.Unlock()
le.cp = cp
}
func (le *lessor) Grant(id LeaseID, ttl int64) (*Lease, error) {
if id == NoLease {
return nil, ErrLeaseNotFound
}
if ttl > MaxLeaseTTL {
return nil, ErrLeaseTTLTooLarge
}
// TODO: when lessor is under high load, it should give out lease
// with longer TTL to reduce renew load.
l := &Lease{
ID: id,
ttl: ttl,
itemSet: make(map[LeaseItem]struct{}),
revokec: make(chan struct{}),
}
le.mu.Lock()
defer le.mu.Unlock()
if _, ok := le.leaseMap[id]; ok {
return nil, ErrLeaseExists
}
if l.ttl < le.minLeaseTTL {
l.ttl = le.minLeaseTTL
}
if le.isPrimary() {
l.refresh(0)
} else {
l.forever()
}
le.leaseMap[id] = l
l.persistTo(le.b)
leaseTotalTTLs.Observe(float64(l.ttl))
leaseGranted.Inc()
if le.isPrimary() {
item := &LeaseWithTime{id: l.ID, time: l.expiry.UnixNano()}
le.leaseExpiredNotifier.RegisterOrUpdate(item)
le.scheduleCheckpointIfNeeded(l)
}
return l, nil
}
func (le *lessor) Revoke(id LeaseID) error {
le.mu.Lock()
l := le.leaseMap[id]
if l == nil {
le.mu.Unlock()
return ErrLeaseNotFound
}
defer close(l.revokec)
// unlock before doing external work
le.mu.Unlock()
if le.rd == nil {
return nil
}
txn := le.rd()
// sort keys so deletes are in same order among all members,
// otherwise the backened hashes will be different
keys := l.Keys()
sort.StringSlice(keys).Sort()
for _, key := range keys {
txn.DeleteRange([]byte(key), nil)
}
le.mu.Lock()
defer le.mu.Unlock()
delete(le.leaseMap, l.ID)
// lease deletion needs to be in the same backend transaction with the
// kv deletion. Or we might end up with not executing the revoke or not
// deleting the keys if etcdserver fails in between.
le.b.BatchTx().UnsafeDelete(leaseBucketName, int64ToBytes(int64(l.ID)))
txn.End()
leaseRevoked.Inc()
return nil
}
func (le *lessor) Checkpoint(id LeaseID, remainingTTL int64) error {
le.mu.Lock()
defer le.mu.Unlock()
if l, ok := le.leaseMap[id]; ok {
// when checkpointing, we only update the remainingTTL, Promote is responsible for applying this to lease expiry
l.remainingTTL = remainingTTL
if le.isPrimary() {
// schedule the next checkpoint as needed
le.scheduleCheckpointIfNeeded(l)
}
}
return nil
}
// Renew renews an existing lease. If the given lease does not exist or
// has expired, an error will be returned.
func (le *lessor) Renew(id LeaseID) (int64, error) {
le.mu.RLock()
if !le.isPrimary() {
// forward renew request to primary instead of returning error.
le.mu.RUnlock()
return -1, ErrNotPrimary
}
demotec := le.demotec
l := le.leaseMap[id]
if l == nil {
le.mu.RUnlock()
return -1, ErrLeaseNotFound
}
// Clear remaining TTL when we renew if it is set
clearRemainingTTL := le.cp != nil && l.remainingTTL > 0
le.mu.RUnlock()
if l.expired() {
select {
// A expired lease might be pending for revoking or going through
// quorum to be revoked. To be accurate, renew request must wait for the
// deletion to complete.
case <-l.revokec:
return -1, ErrLeaseNotFound
// The expired lease might fail to be revoked if the primary changes.
// The caller will retry on ErrNotPrimary.
case <-demotec:
return -1, ErrNotPrimary
case <-le.stopC:
return -1, ErrNotPrimary
}
}
// Clear remaining TTL when we renew if it is set
// By applying a RAFT entry only when the remainingTTL is already set, we limit the number
// of RAFT entries written per lease to a max of 2 per checkpoint interval.
if clearRemainingTTL {
le.cp(context.Background(), &pb.LeaseCheckpointRequest{Checkpoints: []*pb.LeaseCheckpoint{{ID: int64(l.ID), Remaining_TTL: 0}}})
}
le.mu.Lock()
l.refresh(0)
item := &LeaseWithTime{id: l.ID, time: l.expiry.UnixNano()}
le.leaseExpiredNotifier.RegisterOrUpdate(item)
le.mu.Unlock()
leaseRenewed.Inc()
return l.ttl, nil
}
func (le *lessor) Lookup(id LeaseID) *Lease {
le.mu.RLock()
defer le.mu.RUnlock()
return le.leaseMap[id]
}
func (le *lessor) unsafeLeases() []*Lease {
leases := make([]*Lease, 0, len(le.leaseMap))
for _, l := range le.leaseMap {
leases = append(leases, l)
}
return leases
}
func (le *lessor) Leases() []*Lease {
le.mu.RLock()
ls := le.unsafeLeases()
le.mu.RUnlock()
sort.Sort(leasesByExpiry(ls))
return ls
}
func (le *lessor) Promote(extend time.Duration) {
le.mu.Lock()
defer le.mu.Unlock()
le.demotec = make(chan struct{})
// refresh the expiries of all leases.
for _, l := range le.leaseMap {
l.refresh(extend)
item := &LeaseWithTime{id: l.ID, time: l.expiry.UnixNano()}
le.leaseExpiredNotifier.RegisterOrUpdate(item)
}
if len(le.leaseMap) < leaseRevokeRate {
// no possibility of lease pile-up
return
}
// adjust expiries in case of overlap
leases := le.unsafeLeases()
sort.Sort(leasesByExpiry(leases))
baseWindow := leases[0].Remaining()
nextWindow := baseWindow + time.Second
expires := 0
// have fewer expires than the total revoke rate so piled up leases
// don't consume the entire revoke limit
targetExpiresPerSecond := (3 * leaseRevokeRate) / 4
for _, l := range leases {
remaining := l.Remaining()
if remaining > nextWindow {
baseWindow = remaining
nextWindow = baseWindow + time.Second
expires = 1
continue
}
expires++
if expires <= targetExpiresPerSecond {
continue
}
rateDelay := float64(time.Second) * (float64(expires) / float64(targetExpiresPerSecond))
// If leases are extended by n seconds, leases n seconds ahead of the
// base window should be extended by only one second.
rateDelay -= float64(remaining - baseWindow)
delay := time.Duration(rateDelay)
nextWindow = baseWindow + delay
l.refresh(delay + extend)
item := &LeaseWithTime{id: l.ID, time: l.expiry.UnixNano()}
le.leaseExpiredNotifier.RegisterOrUpdate(item)
le.scheduleCheckpointIfNeeded(l)
}
}
type leasesByExpiry []*Lease
func (le leasesByExpiry) Len() int { return len(le) }
func (le leasesByExpiry) Less(i, j int) bool { return le[i].Remaining() < le[j].Remaining() }
func (le leasesByExpiry) Swap(i, j int) { le[i], le[j] = le[j], le[i] }
func (le *lessor) Demote() {
le.mu.Lock()
defer le.mu.Unlock()
// set the expiries of all leases to forever
for _, l := range le.leaseMap {
l.forever()
}
le.clearScheduledLeasesCheckpoints()
le.clearLeaseExpiredNotifier()
if le.demotec != nil {
close(le.demotec)
le.demotec = nil
}
}
// Attach attaches items to the lease with given ID. When the lease
// expires, the attached items will be automatically removed.
// If the given lease does not exist, an error will be returned.
func (le *lessor) Attach(id LeaseID, items []LeaseItem) error {
le.mu.Lock()
defer le.mu.Unlock()
l := le.leaseMap[id]
if l == nil {
return ErrLeaseNotFound
}
l.mu.Lock()
for _, it := range items {
l.itemSet[it] = struct{}{}
le.itemMap[it] = id
}
l.mu.Unlock()
return nil
}
func (le *lessor) GetLease(item LeaseItem) LeaseID {
le.mu.RLock()
id := le.itemMap[item]
le.mu.RUnlock()
return id
}
// Detach detaches items from the lease with given ID.
// If the given lease does not exist, an error will be returned.
func (le *lessor) Detach(id LeaseID, items []LeaseItem) error {
le.mu.Lock()
defer le.mu.Unlock()
l := le.leaseMap[id]
if l == nil {
return ErrLeaseNotFound
}
l.mu.Lock()
for _, it := range items {
delete(l.itemSet, it)
delete(le.itemMap, it)
}
l.mu.Unlock()
return nil
}
func (le *lessor) Recover(b backend.Backend, rd RangeDeleter) {
le.mu.Lock()
defer le.mu.Unlock()
le.b = b
le.rd = rd
le.leaseMap = make(map[LeaseID]*Lease)
le.itemMap = make(map[LeaseItem]LeaseID)
le.initAndRecover()
}
func (le *lessor) ExpiredLeasesC() <-chan []*Lease {
return le.expiredC
}
func (le *lessor) Stop() {
close(le.stopC)
<-le.doneC
}
func (le *lessor) runLoop() {
defer close(le.doneC)
for {
le.revokeExpiredLeases()
le.checkpointScheduledLeases()
select {
case <-time.After(500 * time.Millisecond):
case <-le.stopC:
return
}
}
}
// revokeExpiredLeases finds all leases past their expiry and sends them to epxired channel for
// to be revoked.
func (le *lessor) revokeExpiredLeases() {
var ls []*Lease
// rate limit
revokeLimit := leaseRevokeRate / 2
le.mu.RLock()
if le.isPrimary() {
ls = le.findExpiredLeases(revokeLimit)
}
le.mu.RUnlock()
if len(ls) != 0 {
select {
case <-le.stopC:
return
case le.expiredC <- ls:
default:
// the receiver of expiredC is probably busy handling
// other stuff
// let's try this next time after 500ms
}
}
}
// checkpointScheduledLeases finds all scheduled lease checkpoints that are due and
// submits them to the checkpointer to persist them to the consensus log.
func (le *lessor) checkpointScheduledLeases() {
var cps []*pb.LeaseCheckpoint
// rate limit
for i := 0; i < leaseCheckpointRate/2; i++ {
le.mu.Lock()
if le.isPrimary() {
cps = le.findDueScheduledCheckpoints(maxLeaseCheckpointBatchSize)
}
le.mu.Unlock()
if len(cps) != 0 {
le.cp(context.Background(), &pb.LeaseCheckpointRequest{Checkpoints: cps})
}
if len(cps) < maxLeaseCheckpointBatchSize {
return
}
}
}
func (le *lessor) clearScheduledLeasesCheckpoints() {
le.leaseCheckpointHeap = make(LeaseQueue, 0)
}
func (le *lessor) clearLeaseExpiredNotifier() {
le.leaseExpiredNotifier = newLeaseExpiredNotifier()
}
// expireExists returns true if expiry items exist.
// It pops only when expiry item exists.
// "next" is true, to indicate that it may exist in next attempt.
func (le *lessor) expireExists() (l *Lease, ok bool, next bool) {
if le.leaseExpiredNotifier.Len() == 0 {
return nil, false, false
}
item := le.leaseExpiredNotifier.Poll()
l = le.leaseMap[item.id]
if l == nil {
// lease has expired or been revoked
// no need to revoke (nothing is expiry)
le.leaseExpiredNotifier.Unregister() // O(log N)
return nil, false, true
}
now := time.Now()
if now.UnixNano() < item.time /* expiration time */ {
// Candidate expirations are caught up, reinsert this item
// and no need to revoke (nothing is expiry)
return l, false, false
}
// recheck if revoke is complete after retry interval
item.time = now.Add(le.expiredLeaseRetryInterval).UnixNano()
le.leaseExpiredNotifier.RegisterOrUpdate(item)
return l, true, false
}
// findExpiredLeases loops leases in the leaseMap until reaching expired limit
// and returns the expired leases that needed to be revoked.
func (le *lessor) findExpiredLeases(limit int) []*Lease {
leases := make([]*Lease, 0, 16)
for {
l, ok, next := le.expireExists()
if !ok && !next {
break
}
if !ok {
continue
}
if next {
continue
}
if l.expired() {
leases = append(leases, l)
// reach expired limit
if len(leases) == limit {
break
}
}
}
return leases
}
func (le *lessor) scheduleCheckpointIfNeeded(lease *Lease) {
if le.cp == nil {
return
}
if lease.RemainingTTL() > int64(le.checkpointInterval.Seconds()) {
if le.lg != nil {
le.lg.Debug("Scheduling lease checkpoint",
zap.Int64("leaseID", int64(lease.ID)),
zap.Duration("intervalSeconds", le.checkpointInterval),
)
}
heap.Push(&le.leaseCheckpointHeap, &LeaseWithTime{
id: lease.ID,
time: time.Now().Add(le.checkpointInterval).UnixNano(),
})
}
}
func (le *lessor) findDueScheduledCheckpoints(checkpointLimit int) []*pb.LeaseCheckpoint {
if le.cp == nil {
return nil
}
now := time.Now()
cps := []*pb.LeaseCheckpoint{}
for le.leaseCheckpointHeap.Len() > 0 && len(cps) < checkpointLimit {
lt := le.leaseCheckpointHeap[0]
if lt.time /* next checkpoint time */ > now.UnixNano() {
return cps
}
heap.Pop(&le.leaseCheckpointHeap)
var l *Lease
var ok bool
if l, ok = le.leaseMap[lt.id]; !ok {
continue
}
if !now.Before(l.expiry) {
continue
}
remainingTTL := int64(math.Ceil(l.expiry.Sub(now).Seconds()))
if remainingTTL >= l.ttl {
continue
}
if le.lg != nil {
le.lg.Debug("Checkpointing lease",
zap.Int64("leaseID", int64(lt.id)),
zap.Int64("remainingTTL", remainingTTL),
)
}
cps = append(cps, &pb.LeaseCheckpoint{ID: int64(lt.id), Remaining_TTL: remainingTTL})
}
return cps
}
func (le *lessor) initAndRecover() {
tx := le.b.BatchTx()
tx.Lock()
tx.UnsafeCreateBucket(leaseBucketName)
_, vs := tx.UnsafeRange(leaseBucketName, int64ToBytes(0), int64ToBytes(math.MaxInt64), 0)
// TODO: copy vs and do decoding outside tx lock if lock contention becomes an issue.
for i := range vs {
var lpb leasepb.Lease
err := lpb.Unmarshal(vs[i])
if err != nil {
tx.Unlock()
panic("failed to unmarshal lease proto item")
}
ID := LeaseID(lpb.ID)
if lpb.TTL < le.minLeaseTTL {
lpb.TTL = le.minLeaseTTL
}
le.leaseMap[ID] = &Lease{
ID: ID,
ttl: lpb.TTL,
// itemSet will be filled in when recover key-value pairs
// set expiry to forever, refresh when promoted
itemSet: make(map[LeaseItem]struct{}),
expiry: forever,
revokec: make(chan struct{}),
}
}
le.leaseExpiredNotifier.Init()
heap.Init(&le.leaseCheckpointHeap)
tx.Unlock()
le.b.ForceCommit()
}
type Lease struct {
ID LeaseID
ttl int64 // time to live of the lease in seconds
remainingTTL int64 // remaining time to live in seconds, if zero valued it is considered unset and the full ttl should be used
// expiryMu protects concurrent accesses to expiry
expiryMu sync.RWMutex
// expiry is time when lease should expire. no expiration when expiry.IsZero() is true
expiry time.Time
// mu protects concurrent accesses to itemSet
mu sync.RWMutex
itemSet map[LeaseItem]struct{}
revokec chan struct{}
}
func (l *Lease) expired() bool {
return l.Remaining() <= 0
}
func (l *Lease) persistTo(b backend.Backend) {
key := int64ToBytes(int64(l.ID))
lpb := leasepb.Lease{ID: int64(l.ID), TTL: l.ttl, RemainingTTL: l.remainingTTL}
val, err := lpb.Marshal()
if err != nil {
panic("failed to marshal lease proto item")
}
b.BatchTx().Lock()
b.BatchTx().UnsafePut(leaseBucketName, key, val)
b.BatchTx().Unlock()
}
// TTL returns the TTL of the Lease.
func (l *Lease) TTL() int64 {
return l.ttl
}
// RemainingTTL returns the last checkpointed remaining TTL of the lease.
// TODO(jpbetz): do not expose this utility method
func (l *Lease) RemainingTTL() int64 {
if l.remainingTTL > 0 {
return l.remainingTTL
}
return l.ttl
}
// refresh refreshes the expiry of the lease.
func (l *Lease) refresh(extend time.Duration) {
newExpiry := time.Now().Add(extend + time.Duration(l.RemainingTTL())*time.Second)
l.expiryMu.Lock()
defer l.expiryMu.Unlock()
l.expiry = newExpiry
}
// forever sets the expiry of lease to be forever.
func (l *Lease) forever() {
l.expiryMu.Lock()
defer l.expiryMu.Unlock()
l.expiry = forever
}
// Keys returns all the keys attached to the lease.
func (l *Lease) Keys() []string {
l.mu.RLock()
keys := make([]string, 0, len(l.itemSet))
for k := range l.itemSet {
keys = append(keys, k.Key)
}
l.mu.RUnlock()
return keys
}
// Remaining returns the remaining time of the lease.
func (l *Lease) Remaining() time.Duration {
l.expiryMu.RLock()
defer l.expiryMu.RUnlock()
if l.expiry.IsZero() {
return time.Duration(math.MaxInt64)
}
return time.Until(l.expiry)
}
type LeaseItem struct {
Key string
}
func int64ToBytes(n int64) []byte {
bytes := make([]byte, 8)
binary.BigEndian.PutUint64(bytes, uint64(n))
return bytes
}
// FakeLessor is a fake implementation of Lessor interface.
// Used for testing only.
type FakeLessor struct{}
func (fl *FakeLessor) SetRangeDeleter(dr RangeDeleter) {}
func (fl *FakeLessor) SetCheckpointer(cp Checkpointer) {}
func (fl *FakeLessor) Grant(id LeaseID, ttl int64) (*Lease, error) { return nil, nil }
func (fl *FakeLessor) Revoke(id LeaseID) error { return nil }
func (fl *FakeLessor) Checkpoint(id LeaseID, remainingTTL int64) error { return nil }
func (fl *FakeLessor) Attach(id LeaseID, items []LeaseItem) error { return nil }
func (fl *FakeLessor) GetLease(item LeaseItem) LeaseID { return 0 }
func (fl *FakeLessor) Detach(id LeaseID, items []LeaseItem) error { return nil }
func (fl *FakeLessor) Promote(extend time.Duration) {}
func (fl *FakeLessor) Demote() {}
func (fl *FakeLessor) Renew(id LeaseID) (int64, error) { return 10, nil }
func (fl *FakeLessor) Lookup(id LeaseID) *Lease { return nil }
func (fl *FakeLessor) Leases() []*Lease { return nil }
func (fl *FakeLessor) ExpiredLeasesC() <-chan []*Lease { return nil }
func (fl *FakeLessor) Recover(b backend.Backend, rd RangeDeleter) {}
func (fl *FakeLessor) Stop() {}
type FakeTxnDelete struct {
backend.BatchTx
}
func (ftd *FakeTxnDelete) DeleteRange(key, end []byte) (n, rev int64) { return 0, 0 }
func (ftd *FakeTxnDelete) End() { ftd.Unlock() }