|
|
// Copyright ©2015 The Gonum Authors. All rights reserved.
|
|
|
// Use of this source code is governed by a BSD-style
|
|
|
// license that can be found in the LICENSE file.
|
|
|
|
|
|
package mat
|
|
|
|
|
|
import (
|
|
|
"math"
|
|
|
|
|
|
"gonum.org/v1/gonum/blas"
|
|
|
"gonum.org/v1/gonum/blas/blas64"
|
|
|
)
|
|
|
|
|
|
var (
|
|
|
symDense *SymDense
|
|
|
|
|
|
_ Matrix = symDense
|
|
|
_ Symmetric = symDense
|
|
|
_ RawSymmetricer = symDense
|
|
|
_ MutableSymmetric = symDense
|
|
|
)
|
|
|
|
|
|
const (
|
|
|
badSymTriangle = "mat: blas64.Symmetric not upper"
|
|
|
badSymCap = "mat: bad capacity for SymDense"
|
|
|
)
|
|
|
|
|
|
// SymDense is a symmetric matrix that uses dense storage. SymDense
|
|
|
// matrices are stored in the upper triangle.
|
|
|
type SymDense struct {
|
|
|
mat blas64.Symmetric
|
|
|
cap int
|
|
|
}
|
|
|
|
|
|
// Symmetric represents a symmetric matrix (where the element at {i, j} equals
|
|
|
// the element at {j, i}). Symmetric matrices are always square.
|
|
|
type Symmetric interface {
|
|
|
Matrix
|
|
|
// Symmetric returns the number of rows/columns in the matrix.
|
|
|
Symmetric() int
|
|
|
}
|
|
|
|
|
|
// A RawSymmetricer can return a view of itself as a BLAS Symmetric matrix.
|
|
|
type RawSymmetricer interface {
|
|
|
RawSymmetric() blas64.Symmetric
|
|
|
}
|
|
|
|
|
|
// A MutableSymmetric can set elements of a symmetric matrix.
|
|
|
type MutableSymmetric interface {
|
|
|
Symmetric
|
|
|
SetSym(i, j int, v float64)
|
|
|
}
|
|
|
|
|
|
// NewSymDense creates a new Symmetric matrix with n rows and columns. If data == nil,
|
|
|
// a new slice is allocated for the backing slice. If len(data) == n*n, data is
|
|
|
// used as the backing slice, and changes to the elements of the returned SymDense
|
|
|
// will be reflected in data. If neither of these is true, NewSymDense will panic.
|
|
|
// NewSymDense will panic if n is zero.
|
|
|
//
|
|
|
// The data must be arranged in row-major order, i.e. the (i*c + j)-th
|
|
|
// element in the data slice is the {i, j}-th element in the matrix.
|
|
|
// Only the values in the upper triangular portion of the matrix are used.
|
|
|
func NewSymDense(n int, data []float64) *SymDense {
|
|
|
if n <= 0 {
|
|
|
if n == 0 {
|
|
|
panic(ErrZeroLength)
|
|
|
}
|
|
|
panic("mat: negative dimension")
|
|
|
}
|
|
|
if data != nil && n*n != len(data) {
|
|
|
panic(ErrShape)
|
|
|
}
|
|
|
if data == nil {
|
|
|
data = make([]float64, n*n)
|
|
|
}
|
|
|
return &SymDense{
|
|
|
mat: blas64.Symmetric{
|
|
|
N: n,
|
|
|
Stride: n,
|
|
|
Data: data,
|
|
|
Uplo: blas.Upper,
|
|
|
},
|
|
|
cap: n,
|
|
|
}
|
|
|
}
|
|
|
|
|
|
// Dims returns the number of rows and columns in the matrix.
|
|
|
func (s *SymDense) Dims() (r, c int) {
|
|
|
return s.mat.N, s.mat.N
|
|
|
}
|
|
|
|
|
|
// Caps returns the number of rows and columns in the backing matrix.
|
|
|
func (s *SymDense) Caps() (r, c int) {
|
|
|
return s.cap, s.cap
|
|
|
}
|
|
|
|
|
|
// T returns the receiver, the transpose of a symmetric matrix.
|
|
|
func (s *SymDense) T() Matrix {
|
|
|
return s
|
|
|
}
|
|
|
|
|
|
// Symmetric implements the Symmetric interface and returns the number of rows
|
|
|
// and columns in the matrix.
|
|
|
func (s *SymDense) Symmetric() int {
|
|
|
return s.mat.N
|
|
|
}
|
|
|
|
|
|
// RawSymmetric returns the matrix as a blas64.Symmetric. The returned
|
|
|
// value must be stored in upper triangular format.
|
|
|
func (s *SymDense) RawSymmetric() blas64.Symmetric {
|
|
|
return s.mat
|
|
|
}
|
|
|
|
|
|
// SetRawSymmetric sets the underlying blas64.Symmetric used by the receiver.
|
|
|
// Changes to elements in the receiver following the call will be reflected
|
|
|
// in the input.
|
|
|
//
|
|
|
// The supplied Symmetric must use blas.Upper storage format.
|
|
|
func (s *SymDense) SetRawSymmetric(mat blas64.Symmetric) {
|
|
|
if mat.Uplo != blas.Upper {
|
|
|
panic(badSymTriangle)
|
|
|
}
|
|
|
s.mat = mat
|
|
|
}
|
|
|
|
|
|
// Reset zeros the dimensions of the matrix so that it can be reused as the
|
|
|
// receiver of a dimensionally restricted operation.
|
|
|
//
|
|
|
// See the Reseter interface for more information.
|
|
|
func (s *SymDense) Reset() {
|
|
|
// N and Stride must be zeroed in unison.
|
|
|
s.mat.N, s.mat.Stride = 0, 0
|
|
|
s.mat.Data = s.mat.Data[:0]
|
|
|
}
|
|
|
|
|
|
// Zero sets all of the matrix elements to zero.
|
|
|
func (s *SymDense) Zero() {
|
|
|
for i := 0; i < s.mat.N; i++ {
|
|
|
zero(s.mat.Data[i*s.mat.Stride+i : i*s.mat.Stride+s.mat.N])
|
|
|
}
|
|
|
}
|
|
|
|
|
|
// IsZero returns whether the receiver is zero-sized. Zero-sized matrices can be the
|
|
|
// receiver for size-restricted operations. SymDense matrices can be zeroed using Reset.
|
|
|
func (s *SymDense) IsZero() bool {
|
|
|
// It must be the case that m.Dims() returns
|
|
|
// zeros in this case. See comment in Reset().
|
|
|
return s.mat.N == 0
|
|
|
}
|
|
|
|
|
|
// reuseAs resizes an empty matrix to a n×n matrix,
|
|
|
// or checks that a non-empty matrix is n×n.
|
|
|
func (s *SymDense) reuseAs(n int) {
|
|
|
if n == 0 {
|
|
|
panic(ErrZeroLength)
|
|
|
}
|
|
|
if s.mat.N > s.cap {
|
|
|
panic(badSymCap)
|
|
|
}
|
|
|
if s.IsZero() {
|
|
|
s.mat = blas64.Symmetric{
|
|
|
N: n,
|
|
|
Stride: n,
|
|
|
Data: use(s.mat.Data, n*n),
|
|
|
Uplo: blas.Upper,
|
|
|
}
|
|
|
s.cap = n
|
|
|
return
|
|
|
}
|
|
|
if s.mat.Uplo != blas.Upper {
|
|
|
panic(badSymTriangle)
|
|
|
}
|
|
|
if s.mat.N != n {
|
|
|
panic(ErrShape)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
func (s *SymDense) isolatedWorkspace(a Symmetric) (w *SymDense, restore func()) {
|
|
|
n := a.Symmetric()
|
|
|
if n == 0 {
|
|
|
panic(ErrZeroLength)
|
|
|
}
|
|
|
w = getWorkspaceSym(n, false)
|
|
|
return w, func() {
|
|
|
s.CopySym(w)
|
|
|
putWorkspaceSym(w)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
// DiagView returns the diagonal as a matrix backed by the original data.
|
|
|
func (s *SymDense) DiagView() Diagonal {
|
|
|
n := s.mat.N
|
|
|
return &DiagDense{
|
|
|
mat: blas64.Vector{
|
|
|
N: n,
|
|
|
Inc: s.mat.Stride + 1,
|
|
|
Data: s.mat.Data[:(n-1)*s.mat.Stride+n],
|
|
|
},
|
|
|
}
|
|
|
}
|
|
|
|
|
|
func (s *SymDense) AddSym(a, b Symmetric) {
|
|
|
n := a.Symmetric()
|
|
|
if n != b.Symmetric() {
|
|
|
panic(ErrShape)
|
|
|
}
|
|
|
s.reuseAs(n)
|
|
|
|
|
|
if a, ok := a.(RawSymmetricer); ok {
|
|
|
if b, ok := b.(RawSymmetricer); ok {
|
|
|
amat, bmat := a.RawSymmetric(), b.RawSymmetric()
|
|
|
if s != a {
|
|
|
s.checkOverlap(generalFromSymmetric(amat))
|
|
|
}
|
|
|
if s != b {
|
|
|
s.checkOverlap(generalFromSymmetric(bmat))
|
|
|
}
|
|
|
for i := 0; i < n; i++ {
|
|
|
btmp := bmat.Data[i*bmat.Stride+i : i*bmat.Stride+n]
|
|
|
stmp := s.mat.Data[i*s.mat.Stride+i : i*s.mat.Stride+n]
|
|
|
for j, v := range amat.Data[i*amat.Stride+i : i*amat.Stride+n] {
|
|
|
stmp[j] = v + btmp[j]
|
|
|
}
|
|
|
}
|
|
|
return
|
|
|
}
|
|
|
}
|
|
|
|
|
|
s.checkOverlapMatrix(a)
|
|
|
s.checkOverlapMatrix(b)
|
|
|
for i := 0; i < n; i++ {
|
|
|
stmp := s.mat.Data[i*s.mat.Stride : i*s.mat.Stride+n]
|
|
|
for j := i; j < n; j++ {
|
|
|
stmp[j] = a.At(i, j) + b.At(i, j)
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
func (s *SymDense) CopySym(a Symmetric) int {
|
|
|
n := a.Symmetric()
|
|
|
n = min(n, s.mat.N)
|
|
|
if n == 0 {
|
|
|
return 0
|
|
|
}
|
|
|
switch a := a.(type) {
|
|
|
case RawSymmetricer:
|
|
|
amat := a.RawSymmetric()
|
|
|
if amat.Uplo != blas.Upper {
|
|
|
panic(badSymTriangle)
|
|
|
}
|
|
|
for i := 0; i < n; i++ {
|
|
|
copy(s.mat.Data[i*s.mat.Stride+i:i*s.mat.Stride+n], amat.Data[i*amat.Stride+i:i*amat.Stride+n])
|
|
|
}
|
|
|
default:
|
|
|
for i := 0; i < n; i++ {
|
|
|
stmp := s.mat.Data[i*s.mat.Stride : i*s.mat.Stride+n]
|
|
|
for j := i; j < n; j++ {
|
|
|
stmp[j] = a.At(i, j)
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
return n
|
|
|
}
|
|
|
|
|
|
// SymRankOne performs a symetric rank-one update to the matrix a and stores
|
|
|
// the result in the receiver
|
|
|
// s = a + alpha * x * x'
|
|
|
func (s *SymDense) SymRankOne(a Symmetric, alpha float64, x Vector) {
|
|
|
n, c := x.Dims()
|
|
|
if a.Symmetric() != n || c != 1 {
|
|
|
panic(ErrShape)
|
|
|
}
|
|
|
s.reuseAs(n)
|
|
|
|
|
|
if s != a {
|
|
|
if rs, ok := a.(RawSymmetricer); ok {
|
|
|
s.checkOverlap(generalFromSymmetric(rs.RawSymmetric()))
|
|
|
}
|
|
|
s.CopySym(a)
|
|
|
}
|
|
|
|
|
|
xU, _ := untranspose(x)
|
|
|
if rv, ok := xU.(RawVectorer); ok {
|
|
|
xmat := rv.RawVector()
|
|
|
s.checkOverlap((&VecDense{mat: xmat}).asGeneral())
|
|
|
blas64.Syr(alpha, xmat, s.mat)
|
|
|
return
|
|
|
}
|
|
|
|
|
|
for i := 0; i < n; i++ {
|
|
|
for j := i; j < n; j++ {
|
|
|
s.set(i, j, s.at(i, j)+alpha*x.AtVec(i)*x.AtVec(j))
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
// SymRankK performs a symmetric rank-k update to the matrix a and stores the
|
|
|
// result into the receiver. If a is zero, see SymOuterK.
|
|
|
// s = a + alpha * x * x'
|
|
|
func (s *SymDense) SymRankK(a Symmetric, alpha float64, x Matrix) {
|
|
|
n := a.Symmetric()
|
|
|
r, _ := x.Dims()
|
|
|
if r != n {
|
|
|
panic(ErrShape)
|
|
|
}
|
|
|
xMat, aTrans := untranspose(x)
|
|
|
var g blas64.General
|
|
|
if rm, ok := xMat.(RawMatrixer); ok {
|
|
|
g = rm.RawMatrix()
|
|
|
} else {
|
|
|
g = DenseCopyOf(x).mat
|
|
|
aTrans = false
|
|
|
}
|
|
|
if a != s {
|
|
|
if rs, ok := a.(RawSymmetricer); ok {
|
|
|
s.checkOverlap(generalFromSymmetric(rs.RawSymmetric()))
|
|
|
}
|
|
|
s.reuseAs(n)
|
|
|
s.CopySym(a)
|
|
|
}
|
|
|
t := blas.NoTrans
|
|
|
if aTrans {
|
|
|
t = blas.Trans
|
|
|
}
|
|
|
blas64.Syrk(t, alpha, g, 1, s.mat)
|
|
|
}
|
|
|
|
|
|
// SymOuterK calculates the outer product of x with itself and stores
|
|
|
// the result into the receiver. It is equivalent to the matrix
|
|
|
// multiplication
|
|
|
// s = alpha * x * x'.
|
|
|
// In order to update an existing matrix, see SymRankOne.
|
|
|
func (s *SymDense) SymOuterK(alpha float64, x Matrix) {
|
|
|
n, _ := x.Dims()
|
|
|
switch {
|
|
|
case s.IsZero():
|
|
|
s.mat = blas64.Symmetric{
|
|
|
N: n,
|
|
|
Stride: n,
|
|
|
Data: useZeroed(s.mat.Data, n*n),
|
|
|
Uplo: blas.Upper,
|
|
|
}
|
|
|
s.cap = n
|
|
|
s.SymRankK(s, alpha, x)
|
|
|
case s.mat.Uplo != blas.Upper:
|
|
|
panic(badSymTriangle)
|
|
|
case s.mat.N == n:
|
|
|
if s == x {
|
|
|
w := getWorkspaceSym(n, true)
|
|
|
w.SymRankK(w, alpha, x)
|
|
|
s.CopySym(w)
|
|
|
putWorkspaceSym(w)
|
|
|
} else {
|
|
|
switch r := x.(type) {
|
|
|
case RawMatrixer:
|
|
|
s.checkOverlap(r.RawMatrix())
|
|
|
case RawSymmetricer:
|
|
|
s.checkOverlap(generalFromSymmetric(r.RawSymmetric()))
|
|
|
case RawTriangular:
|
|
|
s.checkOverlap(generalFromTriangular(r.RawTriangular()))
|
|
|
}
|
|
|
// Only zero the upper triangle.
|
|
|
for i := 0; i < n; i++ {
|
|
|
ri := i * s.mat.Stride
|
|
|
zero(s.mat.Data[ri+i : ri+n])
|
|
|
}
|
|
|
s.SymRankK(s, alpha, x)
|
|
|
}
|
|
|
default:
|
|
|
panic(ErrShape)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
// RankTwo performs a symmmetric rank-two update to the matrix a and stores
|
|
|
// the result in the receiver
|
|
|
// m = a + alpha * (x * y' + y * x')
|
|
|
func (s *SymDense) RankTwo(a Symmetric, alpha float64, x, y Vector) {
|
|
|
n := s.mat.N
|
|
|
xr, xc := x.Dims()
|
|
|
if xr != n || xc != 1 {
|
|
|
panic(ErrShape)
|
|
|
}
|
|
|
yr, yc := y.Dims()
|
|
|
if yr != n || yc != 1 {
|
|
|
panic(ErrShape)
|
|
|
}
|
|
|
|
|
|
if s != a {
|
|
|
if rs, ok := a.(RawSymmetricer); ok {
|
|
|
s.checkOverlap(generalFromSymmetric(rs.RawSymmetric()))
|
|
|
}
|
|
|
}
|
|
|
|
|
|
var xmat, ymat blas64.Vector
|
|
|
fast := true
|
|
|
xU, _ := untranspose(x)
|
|
|
if rv, ok := xU.(RawVectorer); ok {
|
|
|
xmat = rv.RawVector()
|
|
|
s.checkOverlap((&VecDense{mat: xmat}).asGeneral())
|
|
|
} else {
|
|
|
fast = false
|
|
|
}
|
|
|
yU, _ := untranspose(y)
|
|
|
if rv, ok := yU.(RawVectorer); ok {
|
|
|
ymat = rv.RawVector()
|
|
|
s.checkOverlap((&VecDense{mat: ymat}).asGeneral())
|
|
|
} else {
|
|
|
fast = false
|
|
|
}
|
|
|
|
|
|
if s != a {
|
|
|
if rs, ok := a.(RawSymmetricer); ok {
|
|
|
s.checkOverlap(generalFromSymmetric(rs.RawSymmetric()))
|
|
|
}
|
|
|
s.reuseAs(n)
|
|
|
s.CopySym(a)
|
|
|
}
|
|
|
|
|
|
if fast {
|
|
|
if s != a {
|
|
|
s.reuseAs(n)
|
|
|
s.CopySym(a)
|
|
|
}
|
|
|
blas64.Syr2(alpha, xmat, ymat, s.mat)
|
|
|
return
|
|
|
}
|
|
|
|
|
|
for i := 0; i < n; i++ {
|
|
|
s.reuseAs(n)
|
|
|
for j := i; j < n; j++ {
|
|
|
s.set(i, j, a.At(i, j)+alpha*(x.AtVec(i)*y.AtVec(j)+y.AtVec(i)*x.AtVec(j)))
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
// ScaleSym multiplies the elements of a by f, placing the result in the receiver.
|
|
|
func (s *SymDense) ScaleSym(f float64, a Symmetric) {
|
|
|
n := a.Symmetric()
|
|
|
s.reuseAs(n)
|
|
|
if a, ok := a.(RawSymmetricer); ok {
|
|
|
amat := a.RawSymmetric()
|
|
|
if s != a {
|
|
|
s.checkOverlap(generalFromSymmetric(amat))
|
|
|
}
|
|
|
for i := 0; i < n; i++ {
|
|
|
for j := i; j < n; j++ {
|
|
|
s.mat.Data[i*s.mat.Stride+j] = f * amat.Data[i*amat.Stride+j]
|
|
|
}
|
|
|
}
|
|
|
return
|
|
|
}
|
|
|
for i := 0; i < n; i++ {
|
|
|
for j := i; j < n; j++ {
|
|
|
s.mat.Data[i*s.mat.Stride+j] = f * a.At(i, j)
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
// SubsetSym extracts a subset of the rows and columns of the matrix a and stores
|
|
|
// the result in-place into the receiver. The resulting matrix size is
|
|
|
// len(set)×len(set). Specifically, at the conclusion of SubsetSym,
|
|
|
// s.At(i, j) equals a.At(set[i], set[j]). Note that the supplied set does not
|
|
|
// have to be a strict subset, dimension repeats are allowed.
|
|
|
func (s *SymDense) SubsetSym(a Symmetric, set []int) {
|
|
|
n := len(set)
|
|
|
na := a.Symmetric()
|
|
|
s.reuseAs(n)
|
|
|
var restore func()
|
|
|
if a == s {
|
|
|
s, restore = s.isolatedWorkspace(a)
|
|
|
defer restore()
|
|
|
}
|
|
|
|
|
|
if a, ok := a.(RawSymmetricer); ok {
|
|
|
raw := a.RawSymmetric()
|
|
|
if s != a {
|
|
|
s.checkOverlap(generalFromSymmetric(raw))
|
|
|
}
|
|
|
for i := 0; i < n; i++ {
|
|
|
ssub := s.mat.Data[i*s.mat.Stride : i*s.mat.Stride+n]
|
|
|
r := set[i]
|
|
|
rsub := raw.Data[r*raw.Stride : r*raw.Stride+na]
|
|
|
for j := i; j < n; j++ {
|
|
|
c := set[j]
|
|
|
if r <= c {
|
|
|
ssub[j] = rsub[c]
|
|
|
} else {
|
|
|
ssub[j] = raw.Data[c*raw.Stride+r]
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
return
|
|
|
}
|
|
|
for i := 0; i < n; i++ {
|
|
|
for j := i; j < n; j++ {
|
|
|
s.mat.Data[i*s.mat.Stride+j] = a.At(set[i], set[j])
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
// SliceSym returns a new Matrix that shares backing data with the receiver.
|
|
|
// The returned matrix starts at {i,i} of the receiver and extends k-i rows
|
|
|
// and columns. The final row and column in the resulting matrix is k-1.
|
|
|
// SliceSym panics with ErrIndexOutOfRange if the slice is outside the
|
|
|
// capacity of the receiver.
|
|
|
func (s *SymDense) SliceSym(i, k int) Symmetric {
|
|
|
sz := s.cap
|
|
|
if i < 0 || sz < i || k < i || sz < k {
|
|
|
panic(ErrIndexOutOfRange)
|
|
|
}
|
|
|
v := *s
|
|
|
v.mat.Data = s.mat.Data[i*s.mat.Stride+i : (k-1)*s.mat.Stride+k]
|
|
|
v.mat.N = k - i
|
|
|
v.cap = s.cap - i
|
|
|
return &v
|
|
|
}
|
|
|
|
|
|
// Trace returns the trace of the matrix.
|
|
|
func (s *SymDense) Trace() float64 {
|
|
|
// TODO(btracey): could use internal asm sum routine.
|
|
|
var v float64
|
|
|
for i := 0; i < s.mat.N; i++ {
|
|
|
v += s.mat.Data[i*s.mat.Stride+i]
|
|
|
}
|
|
|
return v
|
|
|
}
|
|
|
|
|
|
// GrowSym returns the receiver expanded by n rows and n columns. If the
|
|
|
// dimensions of the expanded matrix are outside the capacity of the receiver
|
|
|
// a new allocation is made, otherwise not. Note that the receiver itself is
|
|
|
// not modified during the call to GrowSquare.
|
|
|
func (s *SymDense) GrowSym(n int) Symmetric {
|
|
|
if n < 0 {
|
|
|
panic(ErrIndexOutOfRange)
|
|
|
}
|
|
|
if n == 0 {
|
|
|
return s
|
|
|
}
|
|
|
var v SymDense
|
|
|
n += s.mat.N
|
|
|
if n > s.cap {
|
|
|
v.mat = blas64.Symmetric{
|
|
|
N: n,
|
|
|
Stride: n,
|
|
|
Uplo: blas.Upper,
|
|
|
Data: make([]float64, n*n),
|
|
|
}
|
|
|
v.cap = n
|
|
|
// Copy elements, including those not currently visible. Use a temporary
|
|
|
// structure to avoid modifying the receiver.
|
|
|
var tmp SymDense
|
|
|
tmp.mat = blas64.Symmetric{
|
|
|
N: s.cap,
|
|
|
Stride: s.mat.Stride,
|
|
|
Data: s.mat.Data,
|
|
|
Uplo: s.mat.Uplo,
|
|
|
}
|
|
|
tmp.cap = s.cap
|
|
|
v.CopySym(&tmp)
|
|
|
return &v
|
|
|
}
|
|
|
v.mat = blas64.Symmetric{
|
|
|
N: n,
|
|
|
Stride: s.mat.Stride,
|
|
|
Uplo: blas.Upper,
|
|
|
Data: s.mat.Data[:(n-1)*s.mat.Stride+n],
|
|
|
}
|
|
|
v.cap = s.cap
|
|
|
return &v
|
|
|
}
|
|
|
|
|
|
// PowPSD computes a^pow where a is a positive symmetric definite matrix.
|
|
|
//
|
|
|
// PowPSD returns an error if the matrix is not not positive symmetric definite
|
|
|
// or the Eigendecomposition is not successful.
|
|
|
func (s *SymDense) PowPSD(a Symmetric, pow float64) error {
|
|
|
dim := a.Symmetric()
|
|
|
s.reuseAs(dim)
|
|
|
|
|
|
var eigen EigenSym
|
|
|
ok := eigen.Factorize(a, true)
|
|
|
if !ok {
|
|
|
return ErrFailedEigen
|
|
|
}
|
|
|
values := eigen.Values(nil)
|
|
|
for i, v := range values {
|
|
|
if v <= 0 {
|
|
|
return ErrNotPSD
|
|
|
}
|
|
|
values[i] = math.Pow(v, pow)
|
|
|
}
|
|
|
u := eigen.VectorsTo(nil)
|
|
|
|
|
|
s.SymOuterK(values[0], u.ColView(0))
|
|
|
|
|
|
var v VecDense
|
|
|
for i := 1; i < dim; i++ {
|
|
|
v.ColViewOf(u, i)
|
|
|
s.SymRankOne(s, values[i], &v)
|
|
|
}
|
|
|
return nil
|
|
|
}
|