You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
k3s/vendor/gonum.org/v1/gonum/mat/eigen.go

351 lines
9.3 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

// Copyright ©2013 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"gonum.org/v1/gonum/lapack"
"gonum.org/v1/gonum/lapack/lapack64"
)
const (
badFact = "mat: use without successful factorization"
badNoVect = "mat: eigenvectors not computed"
)
// EigenSym is a type for creating and manipulating the Eigen decomposition of
// symmetric matrices.
type EigenSym struct {
vectorsComputed bool
values []float64
vectors *Dense
}
// Factorize computes the eigenvalue decomposition of the symmetric matrix a.
// The Eigen decomposition is defined as
// A = P * D * P^-1
// where D is a diagonal matrix containing the eigenvalues of the matrix, and
// P is a matrix of the eigenvectors of A. Factorize computes the eigenvalues
// in ascending order. If the vectors input argument is false, the eigenvectors
// are not computed.
//
// Factorize returns whether the decomposition succeeded. If the decomposition
// failed, methods that require a successful factorization will panic.
func (e *EigenSym) Factorize(a Symmetric, vectors bool) (ok bool) {
// kill previous decomposition
e.vectorsComputed = false
e.values = e.values[:]
n := a.Symmetric()
sd := NewSymDense(n, nil)
sd.CopySym(a)
jobz := lapack.EVNone
if vectors {
jobz = lapack.EVCompute
}
w := make([]float64, n)
work := []float64{0}
lapack64.Syev(jobz, sd.mat, w, work, -1)
work = getFloats(int(work[0]), false)
ok = lapack64.Syev(jobz, sd.mat, w, work, len(work))
putFloats(work)
if !ok {
e.vectorsComputed = false
e.values = nil
e.vectors = nil
return false
}
e.vectorsComputed = vectors
e.values = w
e.vectors = NewDense(n, n, sd.mat.Data)
return true
}
// succFact returns whether the receiver contains a successful factorization.
func (e *EigenSym) succFact() bool {
return len(e.values) != 0
}
// Values extracts the eigenvalues of the factorized matrix. If dst is
// non-nil, the values are stored in-place into dst. In this case
// dst must have length n, otherwise Values will panic. If dst is
// nil, then a new slice will be allocated of the proper length and filled
// with the eigenvalues.
//
// Values panics if the Eigen decomposition was not successful.
func (e *EigenSym) Values(dst []float64) []float64 {
if !e.succFact() {
panic(badFact)
}
if dst == nil {
dst = make([]float64, len(e.values))
}
if len(dst) != len(e.values) {
panic(ErrSliceLengthMismatch)
}
copy(dst, e.values)
return dst
}
// VectorsTo returns the eigenvectors of the decomposition. VectorsTo
// will panic if the eigenvectors were not computed during the factorization,
// or if the factorization was not successful.
//
// If dst is not nil, the eigenvectors are stored in-place into dst, and dst
// must have size n×n and panics otherwise. If dst is nil, a new matrix
// is allocated and returned.
func (e *EigenSym) VectorsTo(dst *Dense) *Dense {
if !e.succFact() {
panic(badFact)
}
if !e.vectorsComputed {
panic(badNoVect)
}
r, c := e.vectors.Dims()
if dst == nil {
dst = NewDense(r, c, nil)
} else {
dst.reuseAs(r, c)
}
dst.Copy(e.vectors)
return dst
}
// EigenKind specifies the computation of eigenvectors during factorization.
type EigenKind int
const (
// EigenNone specifies to not compute any eigenvectors.
EigenNone EigenKind = 0
// EigenLeft specifies to compute the left eigenvectors.
EigenLeft EigenKind = 1 << iota
// EigenRight specifies to compute the right eigenvectors.
EigenRight
// EigenBoth is a convenience value for computing both eigenvectors.
EigenBoth EigenKind = EigenLeft | EigenRight
)
// Eigen is a type for creating and using the eigenvalue decomposition of a dense matrix.
type Eigen struct {
n int // The size of the factorized matrix.
kind EigenKind
values []complex128
rVectors *CDense
lVectors *CDense
}
// succFact returns whether the receiver contains a successful factorization.
func (e *Eigen) succFact() bool {
return e.n != 0
}
// Factorize computes the eigenvalues of the square matrix a, and optionally
// the eigenvectors.
//
// A right eigenvalue/eigenvector combination is defined by
// A * x_r = λ * x_r
// where x_r is the column vector called an eigenvector, and λ is the corresponding
// eigenvalue.
//
// Similarly, a left eigenvalue/eigenvector combination is defined by
// x_l * A = λ * x_l
// The eigenvalues, but not the eigenvectors, are the same for both decompositions.
//
// Typically eigenvectors refer to right eigenvectors.
//
// In all cases, Factorize computes the eigenvalues of the matrix. kind
// specifies which of the eigenvectors, if any, to compute. See the EigenKind
// documentation for more information.
// Eigen panics if the input matrix is not square.
//
// Factorize returns whether the decomposition succeeded. If the decomposition
// failed, methods that require a successful factorization will panic.
func (e *Eigen) Factorize(a Matrix, kind EigenKind) (ok bool) {
// kill previous factorization.
e.n = 0
e.kind = 0
// Copy a because it is modified during the Lapack call.
r, c := a.Dims()
if r != c {
panic(ErrShape)
}
var sd Dense
sd.Clone(a)
left := kind&EigenLeft != 0
right := kind&EigenRight != 0
var vl, vr Dense
jobvl := lapack.LeftEVNone
jobvr := lapack.RightEVNone
if left {
vl = *NewDense(r, r, nil)
jobvl = lapack.LeftEVCompute
}
if right {
vr = *NewDense(c, c, nil)
jobvr = lapack.RightEVCompute
}
wr := getFloats(c, false)
defer putFloats(wr)
wi := getFloats(c, false)
defer putFloats(wi)
work := []float64{0}
lapack64.Geev(jobvl, jobvr, sd.mat, wr, wi, vl.mat, vr.mat, work, -1)
work = getFloats(int(work[0]), false)
first := lapack64.Geev(jobvl, jobvr, sd.mat, wr, wi, vl.mat, vr.mat, work, len(work))
putFloats(work)
if first != 0 {
e.values = nil
return false
}
e.n = r
e.kind = kind
// Construct complex eigenvalues from float64 data.
values := make([]complex128, r)
for i, v := range wr {
values[i] = complex(v, wi[i])
}
e.values = values
// Construct complex eigenvectors from float64 data.
var cvl, cvr CDense
if left {
cvl = *NewCDense(r, r, nil)
e.complexEigenTo(&cvl, &vl)
e.lVectors = &cvl
} else {
e.lVectors = nil
}
if right {
cvr = *NewCDense(c, c, nil)
e.complexEigenTo(&cvr, &vr)
e.rVectors = &cvr
} else {
e.rVectors = nil
}
return true
}
// Kind returns the EigenKind of the decomposition. If no decomposition has been
// computed, Kind returns -1.
func (e *Eigen) Kind() EigenKind {
if !e.succFact() {
return -1
}
return e.kind
}
// Values extracts the eigenvalues of the factorized matrix. If dst is
// non-nil, the values are stored in-place into dst. In this case
// dst must have length n, otherwise Values will panic. If dst is
// nil, then a new slice will be allocated of the proper length and
// filed with the eigenvalues.
//
// Values panics if the Eigen decomposition was not successful.
func (e *Eigen) Values(dst []complex128) []complex128 {
if !e.succFact() {
panic(badFact)
}
if dst == nil {
dst = make([]complex128, e.n)
}
if len(dst) != e.n {
panic(ErrSliceLengthMismatch)
}
copy(dst, e.values)
return dst
}
// complexEigenTo extracts the complex eigenvectors from the real matrix d
// and stores them into the complex matrix dst.
//
// The columns of the returned n×n dense matrix contain the eigenvectors of the
// decomposition in the same order as the eigenvalues.
// If the j-th eigenvalue is real, then
// dst[:,j] = d[:,j],
// and if it is not real, then the elements of the j-th and (j+1)-th columns of d
// form complex conjugate pairs and the eigenvectors are recovered as
// dst[:,j] = d[:,j] + i*d[:,j+1],
// dst[:,j+1] = d[:,j] - i*d[:,j+1],
// where i is the imaginary unit.
func (e *Eigen) complexEigenTo(dst *CDense, d *Dense) {
r, c := d.Dims()
cr, cc := dst.Dims()
if r != cr {
panic("size mismatch")
}
if c != cc {
panic("size mismatch")
}
for j := 0; j < c; j++ {
if imag(e.values[j]) == 0 {
for i := 0; i < r; i++ {
dst.set(i, j, complex(d.at(i, j), 0))
}
continue
}
for i := 0; i < r; i++ {
real := d.at(i, j)
imag := d.at(i, j+1)
dst.set(i, j, complex(real, imag))
dst.set(i, j+1, complex(real, -imag))
}
j++
}
}
// VectorsTo returns the right eigenvectors of the decomposition. VectorsTo
// will panic if the right eigenvectors were not computed during the factorization,
// or if the factorization was not successful.
//
// The computed eigenvectors are normalized to have Euclidean norm equal to 1
// and largest component real.
func (e *Eigen) VectorsTo(dst *CDense) *CDense {
if !e.succFact() {
panic(badFact)
}
if e.kind&EigenRight == 0 {
panic(badNoVect)
}
if dst == nil {
dst = NewCDense(e.n, e.n, nil)
} else {
dst.reuseAs(e.n, e.n)
}
dst.Copy(e.rVectors)
return dst
}
// LeftVectorsTo returns the left eigenvectors of the decomposition. LeftVectorsTo
// will panic if the left eigenvectors were not computed during the factorization,
// or if the factorization was not successful.
//
// The computed eigenvectors are normalized to have Euclidean norm equal to 1
// and largest component real.
func (e *Eigen) LeftVectorsTo(dst *CDense) *CDense {
if !e.succFact() {
panic(badFact)
}
if e.kind&EigenLeft == 0 {
panic(badNoVect)
}
if dst == nil {
dst = NewCDense(e.n, e.n, nil)
} else {
dst.reuseAs(e.n, e.n)
}
dst.Copy(e.lVectors)
return dst
}