You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
k3s/vendor/gonum.org/v1/gonum/lapack/lapack.go

214 lines
8.0 KiB

// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package lapack
import "gonum.org/v1/gonum/blas"
// Complex128 defines the public complex128 LAPACK API supported by gonum/lapack.
type Complex128 interface{}
// Float64 defines the public float64 LAPACK API supported by gonum/lapack.
type Float64 interface {
Dgecon(norm MatrixNorm, n int, a []float64, lda int, anorm float64, work []float64, iwork []int) float64
Dgeev(jobvl LeftEVJob, jobvr RightEVJob, n int, a []float64, lda int, wr, wi []float64, vl []float64, ldvl int, vr []float64, ldvr int, work []float64, lwork int) (first int)
Dgels(trans blas.Transpose, m, n, nrhs int, a []float64, lda int, b []float64, ldb int, work []float64, lwork int) bool
Dgelqf(m, n int, a []float64, lda int, tau, work []float64, lwork int)
Dgeqrf(m, n int, a []float64, lda int, tau, work []float64, lwork int)
Dgesvd(jobU, jobVT SVDJob, m, n int, a []float64, lda int, s, u []float64, ldu int, vt []float64, ldvt int, work []float64, lwork int) (ok bool)
Dgetrf(m, n int, a []float64, lda int, ipiv []int) (ok bool)
Dgetri(n int, a []float64, lda int, ipiv []int, work []float64, lwork int) (ok bool)
Dgetrs(trans blas.Transpose, n, nrhs int, a []float64, lda int, ipiv []int, b []float64, ldb int)
Dggsvd3(jobU, jobV, jobQ GSVDJob, m, n, p int, a []float64, lda int, b []float64, ldb int, alpha, beta, u []float64, ldu int, v []float64, ldv int, q []float64, ldq int, work []float64, lwork int, iwork []int) (k, l int, ok bool)
Dlantr(norm MatrixNorm, uplo blas.Uplo, diag blas.Diag, m, n int, a []float64, lda int, work []float64) float64
Dlange(norm MatrixNorm, m, n int, a []float64, lda int, work []float64) float64
Dlansy(norm MatrixNorm, uplo blas.Uplo, n int, a []float64, lda int, work []float64) float64
Dlapmt(forward bool, m, n int, x []float64, ldx int, k []int)
Dormqr(side blas.Side, trans blas.Transpose, m, n, k int, a []float64, lda int, tau, c []float64, ldc int, work []float64, lwork int)
Dormlq(side blas.Side, trans blas.Transpose, m, n, k int, a []float64, lda int, tau, c []float64, ldc int, work []float64, lwork int)
Dpocon(uplo blas.Uplo, n int, a []float64, lda int, anorm float64, work []float64, iwork []int) float64
Dpotrf(ul blas.Uplo, n int, a []float64, lda int) (ok bool)
Dpotri(ul blas.Uplo, n int, a []float64, lda int) (ok bool)
Dpotrs(ul blas.Uplo, n, nrhs int, a []float64, lda int, b []float64, ldb int)
Dsyev(jobz EVJob, uplo blas.Uplo, n int, a []float64, lda int, w, work []float64, lwork int) (ok bool)
Dtrcon(norm MatrixNorm, uplo blas.Uplo, diag blas.Diag, n int, a []float64, lda int, work []float64, iwork []int) float64
Dtrtri(uplo blas.Uplo, diag blas.Diag, n int, a []float64, lda int) (ok bool)
Dtrtrs(uplo blas.Uplo, trans blas.Transpose, diag blas.Diag, n, nrhs int, a []float64, lda int, b []float64, ldb int) (ok bool)
}
// Direct specifies the direction of the multiplication for the Householder matrix.
type Direct byte
const (
Forward Direct = 'F' // Reflectors are right-multiplied, H_0 * H_1 * ... * H_{k-1}.
Backward Direct = 'B' // Reflectors are left-multiplied, H_{k-1} * ... * H_1 * H_0.
)
// Sort is the sorting order.
type Sort byte
const (
SortIncreasing Sort = 'I'
SortDecreasing Sort = 'D'
)
// StoreV indicates the storage direction of elementary reflectors.
type StoreV byte
const (
ColumnWise StoreV = 'C' // Reflector stored in a column of the matrix.
RowWise StoreV = 'R' // Reflector stored in a row of the matrix.
)
// MatrixNorm represents the kind of matrix norm to compute.
type MatrixNorm byte
const (
MaxAbs MatrixNorm = 'M' // max(abs(A(i,j)))
MaxColumnSum MatrixNorm = 'O' // Maximum absolute column sum (one norm)
MaxRowSum MatrixNorm = 'I' // Maximum absolute row sum (infinity norm)
Frobenius MatrixNorm = 'F' // Frobenius norm (sqrt of sum of squares)
)
// MatrixType represents the kind of matrix represented in the data.
type MatrixType byte
const (
General MatrixType = 'G' // A general dense matrix.
UpperTri MatrixType = 'U' // An upper triangular matrix.
LowerTri MatrixType = 'L' // A lower triangular matrix.
)
// Pivot specifies the pivot type for plane rotations.
type Pivot byte
const (
Variable Pivot = 'V'
Top Pivot = 'T'
Bottom Pivot = 'B'
)
// ApplyOrtho specifies which orthogonal matrix is applied in Dormbr.
type ApplyOrtho byte
const (
ApplyP ApplyOrtho = 'P' // Apply P or Pᵀ.
ApplyQ ApplyOrtho = 'Q' // Apply Q or Qᵀ.
)
// GenOrtho specifies which orthogonal matrix is generated in Dorgbr.
type GenOrtho byte
const (
GeneratePT GenOrtho = 'P' // Generate Pᵀ.
GenerateQ GenOrtho = 'Q' // Generate Q.
)
// SVDJob specifies the singular vector computation type for SVD.
type SVDJob byte
const (
SVDAll SVDJob = 'A' // Compute all columns of the orthogonal matrix U or V.
SVDStore SVDJob = 'S' // Compute the singular vectors and store them in the orthogonal matrix U or V.
SVDOverwrite SVDJob = 'O' // Compute the singular vectors and overwrite them on the input matrix A.
SVDNone SVDJob = 'N' // Do not compute singular vectors.
)
// GSVDJob specifies the singular vector computation type for Generalized SVD.
type GSVDJob byte
const (
GSVDU GSVDJob = 'U' // Compute orthogonal matrix U.
GSVDV GSVDJob = 'V' // Compute orthogonal matrix V.
GSVDQ GSVDJob = 'Q' // Compute orthogonal matrix Q.
GSVDUnit GSVDJob = 'I' // Use unit-initialized matrix.
GSVDNone GSVDJob = 'N' // Do not compute orthogonal matrix.
)
// EVComp specifies how eigenvectors are computed in Dsteqr.
type EVComp byte
const (
EVOrig EVComp = 'V' // Compute eigenvectors of the original symmetric matrix.
EVTridiag EVComp = 'I' // Compute eigenvectors of the tridiagonal matrix.
EVCompNone EVComp = 'N' // Do not compute eigenvectors.
)
// EVJob specifies whether eigenvectors are computed in Dsyev.
type EVJob byte
const (
EVCompute EVJob = 'V' // Compute eigenvectors.
EVNone EVJob = 'N' // Do not compute eigenvectors.
)
// LeftEVJob specifies whether left eigenvectors are computed in Dgeev.
type LeftEVJob byte
const (
LeftEVCompute LeftEVJob = 'V' // Compute left eigenvectors.
LeftEVNone LeftEVJob = 'N' // Do not compute left eigenvectors.
)
// RightEVJob specifies whether right eigenvectors are computed in Dgeev.
type RightEVJob byte
const (
RightEVCompute RightEVJob = 'V' // Compute right eigenvectors.
RightEVNone RightEVJob = 'N' // Do not compute right eigenvectors.
)
// BalanceJob specifies matrix balancing operation.
type BalanceJob byte
const (
Permute BalanceJob = 'P'
Scale BalanceJob = 'S'
PermuteScale BalanceJob = 'B'
BalanceNone BalanceJob = 'N'
)
// SchurJob specifies whether the Schur form is computed in Dhseqr.
type SchurJob byte
const (
EigenvaluesOnly SchurJob = 'E'
EigenvaluesAndSchur SchurJob = 'S'
)
// SchurComp specifies whether and how the Schur vectors are computed in Dhseqr.
type SchurComp byte
const (
SchurOrig SchurComp = 'V' // Compute Schur vectors of the original matrix.
SchurHess SchurComp = 'I' // Compute Schur vectors of the upper Hessenberg matrix.
SchurNone SchurComp = 'N' // Do not compute Schur vectors.
)
// UpdateSchurComp specifies whether the matrix of Schur vectors is updated in Dtrexc.
type UpdateSchurComp byte
const (
UpdateSchur UpdateSchurComp = 'V' // Update the matrix of Schur vectors.
UpdateSchurNone UpdateSchurComp = 'N' // Do not update the matrix of Schur vectors.
)
// EVSide specifies what eigenvectors are computed in Dtrevc3.
type EVSide byte
const (
EVRight EVSide = 'R' // Compute only right eigenvectors.
EVLeft EVSide = 'L' // Compute only left eigenvectors.
EVBoth EVSide = 'B' // Compute both right and left eigenvectors.
)
// EVHowMany specifies which eigenvectors are computed in Dtrevc3 and how.
type EVHowMany byte
const (
EVAll EVHowMany = 'A' // Compute all right and/or left eigenvectors.
EVAllMulQ EVHowMany = 'B' // Compute all right and/or left eigenvectors multiplied by an input matrix.
EVSelected EVHowMany = 'S' // Compute selected right and/or left eigenvectors.
)