You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
k3s/vendor/gonum.org/v1/gonum/mat/lq.go

263 lines
7.2 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

// Copyright ©2013 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"math"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/lapack"
"gonum.org/v1/gonum/lapack/lapack64"
)
const badLQ = "mat: invalid LQ factorization"
// LQ is a type for creating and using the LQ factorization of a matrix.
type LQ struct {
lq *Dense
tau []float64
cond float64
}
func (lq *LQ) updateCond(norm lapack.MatrixNorm) {
// Since A = L*Q, and Q is orthogonal, we get for the condition number κ
// κ(A) := |A| |A^-1| = |L*Q| |(L*Q)^-1| = |L| |Q^T * L^-1|
// = |L| |L^-1| = κ(L),
// where we used that fact that Q^-1 = Q^T. However, this assumes that
// the matrix norm is invariant under orthogonal transformations which
// is not the case for CondNorm. Hopefully the error is negligible: κ
// is only a qualitative measure anyway.
m := lq.lq.mat.Rows
work := getFloats(3*m, false)
iwork := getInts(m, false)
l := lq.lq.asTriDense(m, blas.NonUnit, blas.Lower)
v := lapack64.Trcon(norm, l.mat, work, iwork)
lq.cond = 1 / v
putFloats(work)
putInts(iwork)
}
// Factorize computes the LQ factorization of an m×n matrix a where n <= m. The LQ
// factorization always exists even if A is singular.
//
// The LQ decomposition is a factorization of the matrix A such that A = L * Q.
// The matrix Q is an orthonormal n×n matrix, and L is an m×n upper triangular matrix.
// L and Q can be extracted from the LTo and QTo methods.
func (lq *LQ) Factorize(a Matrix) {
lq.factorize(a, CondNorm)
}
func (lq *LQ) factorize(a Matrix, norm lapack.MatrixNorm) {
m, n := a.Dims()
if m > n {
panic(ErrShape)
}
k := min(m, n)
if lq.lq == nil {
lq.lq = &Dense{}
}
lq.lq.Clone(a)
work := []float64{0}
lq.tau = make([]float64, k)
lapack64.Gelqf(lq.lq.mat, lq.tau, work, -1)
work = getFloats(int(work[0]), false)
lapack64.Gelqf(lq.lq.mat, lq.tau, work, len(work))
putFloats(work)
lq.updateCond(norm)
}
// isValid returns whether the receiver contains a factorization.
func (lq *LQ) isValid() bool {
return lq.lq != nil && !lq.lq.IsZero()
}
// Cond returns the condition number for the factorized matrix.
// Cond will panic if the receiver does not contain a factorization.
func (lq *LQ) Cond() float64 {
if !lq.isValid() {
panic(badLQ)
}
return lq.cond
}
// TODO(btracey): Add in the "Reduced" forms for extracting the m×m orthogonal
// and upper triangular matrices.
// LTo extracts the m×n lower trapezoidal matrix from a LQ decomposition.
// If dst is nil, a new matrix is allocated. The resulting L matrix is returned.
// LTo will panic if the receiver does not contain a factorization.
func (lq *LQ) LTo(dst *Dense) *Dense {
if !lq.isValid() {
panic(badLQ)
}
r, c := lq.lq.Dims()
if dst == nil {
dst = NewDense(r, c, nil)
} else {
dst.reuseAs(r, c)
}
// Disguise the LQ as a lower triangular.
t := &TriDense{
mat: blas64.Triangular{
N: r,
Stride: lq.lq.mat.Stride,
Data: lq.lq.mat.Data,
Uplo: blas.Lower,
Diag: blas.NonUnit,
},
cap: lq.lq.capCols,
}
dst.Copy(t)
if r == c {
return dst
}
// Zero right of the triangular.
for i := 0; i < r; i++ {
zero(dst.mat.Data[i*dst.mat.Stride+r : i*dst.mat.Stride+c])
}
return dst
}
// QTo extracts the n×n orthonormal matrix Q from an LQ decomposition.
// If dst is nil, a new matrix is allocated. The resulting Q matrix is returned.
// QTo will panic if the receiver does not contain a factorization.
func (lq *LQ) QTo(dst *Dense) *Dense {
if !lq.isValid() {
panic(badLQ)
}
_, c := lq.lq.Dims()
if dst == nil {
dst = NewDense(c, c, nil)
} else {
dst.reuseAsZeroed(c, c)
}
q := dst.mat
// Set Q = I.
ldq := q.Stride
for i := 0; i < c; i++ {
q.Data[i*ldq+i] = 1
}
// Construct Q from the elementary reflectors.
work := []float64{0}
lapack64.Ormlq(blas.Left, blas.NoTrans, lq.lq.mat, lq.tau, q, work, -1)
work = getFloats(int(work[0]), false)
lapack64.Ormlq(blas.Left, blas.NoTrans, lq.lq.mat, lq.tau, q, work, len(work))
putFloats(work)
return dst
}
// SolveTo finds a minimum-norm solution to a system of linear equations defined
// by the matrices A and b, where A is an m×n matrix represented in its LQ factorized
// form. If A is singular or near-singular a Condition error is returned.
// See the documentation for Condition for more information.
//
// The minimization problem solved depends on the input parameters.
// If trans == false, find the minimum norm solution of A * X = B.
// If trans == true, find X such that ||A*X - B||_2 is minimized.
// The solution matrix, X, is stored in place into dst.
// SolveTo will panic if the receiver does not contain a factorization.
func (lq *LQ) SolveTo(dst *Dense, trans bool, b Matrix) error {
if !lq.isValid() {
panic(badLQ)
}
r, c := lq.lq.Dims()
br, bc := b.Dims()
// The LQ solve algorithm stores the result in-place into the right hand side.
// The storage for the answer must be large enough to hold both b and x.
// However, this method's receiver must be the size of x. Copy b, and then
// copy the result into x at the end.
if trans {
if c != br {
panic(ErrShape)
}
dst.reuseAs(r, bc)
} else {
if r != br {
panic(ErrShape)
}
dst.reuseAs(c, bc)
}
// Do not need to worry about overlap between x and b because w has its own
// independent storage.
w := getWorkspace(max(r, c), bc, false)
w.Copy(b)
t := lq.lq.asTriDense(lq.lq.mat.Rows, blas.NonUnit, blas.Lower).mat
if trans {
work := []float64{0}
lapack64.Ormlq(blas.Left, blas.NoTrans, lq.lq.mat, lq.tau, w.mat, work, -1)
work = getFloats(int(work[0]), false)
lapack64.Ormlq(blas.Left, blas.NoTrans, lq.lq.mat, lq.tau, w.mat, work, len(work))
putFloats(work)
ok := lapack64.Trtrs(blas.Trans, t, w.mat)
if !ok {
return Condition(math.Inf(1))
}
} else {
ok := lapack64.Trtrs(blas.NoTrans, t, w.mat)
if !ok {
return Condition(math.Inf(1))
}
for i := r; i < c; i++ {
zero(w.mat.Data[i*w.mat.Stride : i*w.mat.Stride+bc])
}
work := []float64{0}
lapack64.Ormlq(blas.Left, blas.Trans, lq.lq.mat, lq.tau, w.mat, work, -1)
work = getFloats(int(work[0]), false)
lapack64.Ormlq(blas.Left, blas.Trans, lq.lq.mat, lq.tau, w.mat, work, len(work))
putFloats(work)
}
// x was set above to be the correct size for the result.
dst.Copy(w)
putWorkspace(w)
if lq.cond > ConditionTolerance {
return Condition(lq.cond)
}
return nil
}
// SolveVecTo finds a minimum-norm solution to a system of linear equations.
// See LQ.SolveTo for the full documentation.
// SolveToVec will panic if the receiver does not contain a factorization.
func (lq *LQ) SolveVecTo(dst *VecDense, trans bool, b Vector) error {
if !lq.isValid() {
panic(badLQ)
}
r, c := lq.lq.Dims()
if _, bc := b.Dims(); bc != 1 {
panic(ErrShape)
}
// The Solve implementation is non-trivial, so rather than duplicate the code,
// instead recast the VecDenses as Dense and call the matrix code.
bm := Matrix(b)
if rv, ok := b.(RawVectorer); ok {
bmat := rv.RawVector()
if dst != b {
dst.checkOverlap(bmat)
}
b := VecDense{mat: bmat}
bm = b.asDense()
}
if trans {
dst.reuseAs(r)
} else {
dst.reuseAs(c)
}
return lq.SolveTo(dst.asDense(), trans, bm)
}