|
|
// Copyright ©2018 The Gonum Authors. All rights reserved.
|
|
|
// Use of this source code is governed by a BSD-style
|
|
|
// license that can be found in the LICENSE file.
|
|
|
|
|
|
package mat
|
|
|
|
|
|
import (
|
|
|
"gonum.org/v1/gonum/blas"
|
|
|
"gonum.org/v1/gonum/blas/blas64"
|
|
|
)
|
|
|
|
|
|
var (
|
|
|
diagDense *DiagDense
|
|
|
_ Matrix = diagDense
|
|
|
_ Diagonal = diagDense
|
|
|
_ MutableDiagonal = diagDense
|
|
|
_ Triangular = diagDense
|
|
|
_ TriBanded = diagDense
|
|
|
_ Symmetric = diagDense
|
|
|
_ SymBanded = diagDense
|
|
|
_ Banded = diagDense
|
|
|
_ RawBander = diagDense
|
|
|
_ RawSymBander = diagDense
|
|
|
|
|
|
diag Diagonal
|
|
|
_ Matrix = diag
|
|
|
_ Diagonal = diag
|
|
|
_ Triangular = diag
|
|
|
_ TriBanded = diag
|
|
|
_ Symmetric = diag
|
|
|
_ SymBanded = diag
|
|
|
_ Banded = diag
|
|
|
)
|
|
|
|
|
|
// Diagonal represents a diagonal matrix, that is a square matrix that only
|
|
|
// has non-zero terms on the diagonal.
|
|
|
type Diagonal interface {
|
|
|
Matrix
|
|
|
// Diag returns the number of rows/columns in the matrix.
|
|
|
Diag() int
|
|
|
|
|
|
// Bandwidth and TBand are included in the Diagonal interface
|
|
|
// to allow the use of Diagonal types in banded functions.
|
|
|
// Bandwidth will always return (0, 0).
|
|
|
Bandwidth() (kl, ku int)
|
|
|
TBand() Banded
|
|
|
|
|
|
// Triangle and TTri are included in the Diagonal interface
|
|
|
// to allow the use of Diagonal types in triangular functions.
|
|
|
Triangle() (int, TriKind)
|
|
|
TTri() Triangular
|
|
|
|
|
|
// Symmetric and SymBand are included in the Diagonal interface
|
|
|
// to allow the use of Diagonal types in symmetric and banded symmetric
|
|
|
// functions respectively.
|
|
|
Symmetric() int
|
|
|
SymBand() (n, k int)
|
|
|
|
|
|
// TriBand and TTriBand are included in the Diagonal interface
|
|
|
// to allow the use of Diagonal types in triangular banded functions.
|
|
|
TriBand() (n, k int, kind TriKind)
|
|
|
TTriBand() TriBanded
|
|
|
}
|
|
|
|
|
|
// MutableDiagonal is a Diagonal matrix whose elements can be set.
|
|
|
type MutableDiagonal interface {
|
|
|
Diagonal
|
|
|
SetDiag(i int, v float64)
|
|
|
}
|
|
|
|
|
|
// DiagDense represents a diagonal matrix in dense storage format.
|
|
|
type DiagDense struct {
|
|
|
mat blas64.Vector
|
|
|
}
|
|
|
|
|
|
// NewDiagDense creates a new Diagonal matrix with n rows and n columns.
|
|
|
// The length of data must be n or data must be nil, otherwise NewDiagDense
|
|
|
// will panic. NewDiagDense will panic if n is zero.
|
|
|
func NewDiagDense(n int, data []float64) *DiagDense {
|
|
|
if n <= 0 {
|
|
|
if n == 0 {
|
|
|
panic(ErrZeroLength)
|
|
|
}
|
|
|
panic("mat: negative dimension")
|
|
|
}
|
|
|
if data == nil {
|
|
|
data = make([]float64, n)
|
|
|
}
|
|
|
if len(data) != n {
|
|
|
panic(ErrShape)
|
|
|
}
|
|
|
return &DiagDense{
|
|
|
mat: blas64.Vector{N: n, Data: data, Inc: 1},
|
|
|
}
|
|
|
}
|
|
|
|
|
|
// Diag returns the dimension of the receiver.
|
|
|
func (d *DiagDense) Diag() int {
|
|
|
return d.mat.N
|
|
|
}
|
|
|
|
|
|
// Dims returns the dimensions of the matrix.
|
|
|
func (d *DiagDense) Dims() (r, c int) {
|
|
|
return d.mat.N, d.mat.N
|
|
|
}
|
|
|
|
|
|
// T returns the transpose of the matrix.
|
|
|
func (d *DiagDense) T() Matrix {
|
|
|
return d
|
|
|
}
|
|
|
|
|
|
// TTri returns the transpose of the matrix. Note that Diagonal matrices are
|
|
|
// Upper by default.
|
|
|
func (d *DiagDense) TTri() Triangular {
|
|
|
return TransposeTri{d}
|
|
|
}
|
|
|
|
|
|
// TBand performs an implicit transpose by returning the receiver inside a
|
|
|
// TransposeBand.
|
|
|
func (d *DiagDense) TBand() Banded {
|
|
|
return TransposeBand{d}
|
|
|
}
|
|
|
|
|
|
// TTriBand performs an implicit transpose by returning the receiver inside a
|
|
|
// TransposeTriBand. Note that Diagonal matrices are Upper by default.
|
|
|
func (d *DiagDense) TTriBand() TriBanded {
|
|
|
return TransposeTriBand{d}
|
|
|
}
|
|
|
|
|
|
// Bandwidth returns the upper and lower bandwidths of the matrix.
|
|
|
// These values are always zero for diagonal matrices.
|
|
|
func (d *DiagDense) Bandwidth() (kl, ku int) {
|
|
|
return 0, 0
|
|
|
}
|
|
|
|
|
|
// Symmetric implements the Symmetric interface.
|
|
|
func (d *DiagDense) Symmetric() int {
|
|
|
return d.mat.N
|
|
|
}
|
|
|
|
|
|
// SymBand returns the number of rows/columns in the matrix, and the size of
|
|
|
// the bandwidth.
|
|
|
func (d *DiagDense) SymBand() (n, k int) {
|
|
|
return d.mat.N, 0
|
|
|
}
|
|
|
|
|
|
// Triangle implements the Triangular interface.
|
|
|
func (d *DiagDense) Triangle() (int, TriKind) {
|
|
|
return d.mat.N, Upper
|
|
|
}
|
|
|
|
|
|
// TriBand returns the number of rows/columns in the matrix, the
|
|
|
// size of the bandwidth, and the orientation. Note that Diagonal matrices are
|
|
|
// Upper by default.
|
|
|
func (d *DiagDense) TriBand() (n, k int, kind TriKind) {
|
|
|
return d.mat.N, 0, Upper
|
|
|
}
|
|
|
|
|
|
// Reset zeros the length of the matrix so that it can be reused as the
|
|
|
// receiver of a dimensionally restricted operation.
|
|
|
//
|
|
|
// See the Reseter interface for more information.
|
|
|
func (d *DiagDense) Reset() {
|
|
|
// No change of Inc or n to 0 may be
|
|
|
// made unless both are set to 0.
|
|
|
d.mat.Inc = 0
|
|
|
d.mat.N = 0
|
|
|
d.mat.Data = d.mat.Data[:0]
|
|
|
}
|
|
|
|
|
|
// Zero sets all of the matrix elements to zero.
|
|
|
func (d *DiagDense) Zero() {
|
|
|
for i := 0; i < d.mat.N; i++ {
|
|
|
d.mat.Data[d.mat.Inc*i] = 0
|
|
|
}
|
|
|
}
|
|
|
|
|
|
// DiagView returns the diagonal as a matrix backed by the original data.
|
|
|
func (d *DiagDense) DiagView() Diagonal {
|
|
|
return d
|
|
|
}
|
|
|
|
|
|
// DiagFrom copies the diagonal of m into the receiver. The receiver must
|
|
|
// be min(r, c) long or zero. Otherwise DiagFrom will panic.
|
|
|
func (d *DiagDense) DiagFrom(m Matrix) {
|
|
|
n := min(m.Dims())
|
|
|
d.reuseAs(n)
|
|
|
|
|
|
var vec blas64.Vector
|
|
|
switch r := m.(type) {
|
|
|
case *DiagDense:
|
|
|
vec = r.mat
|
|
|
case RawBander:
|
|
|
mat := r.RawBand()
|
|
|
vec = blas64.Vector{
|
|
|
N: n,
|
|
|
Inc: mat.Stride,
|
|
|
Data: mat.Data[mat.KL : (n-1)*mat.Stride+mat.KL+1],
|
|
|
}
|
|
|
case RawMatrixer:
|
|
|
mat := r.RawMatrix()
|
|
|
vec = blas64.Vector{
|
|
|
N: n,
|
|
|
Inc: mat.Stride + 1,
|
|
|
Data: mat.Data[:(n-1)*mat.Stride+n],
|
|
|
}
|
|
|
case RawSymBander:
|
|
|
mat := r.RawSymBand()
|
|
|
vec = blas64.Vector{
|
|
|
N: n,
|
|
|
Inc: mat.Stride,
|
|
|
Data: mat.Data[:(n-1)*mat.Stride+1],
|
|
|
}
|
|
|
case RawSymmetricer:
|
|
|
mat := r.RawSymmetric()
|
|
|
vec = blas64.Vector{
|
|
|
N: n,
|
|
|
Inc: mat.Stride + 1,
|
|
|
Data: mat.Data[:(n-1)*mat.Stride+n],
|
|
|
}
|
|
|
case RawTriBander:
|
|
|
mat := r.RawTriBand()
|
|
|
data := mat.Data
|
|
|
if mat.Uplo == blas.Lower {
|
|
|
data = data[mat.K:]
|
|
|
}
|
|
|
vec = blas64.Vector{
|
|
|
N: n,
|
|
|
Inc: mat.Stride,
|
|
|
Data: data[:(n-1)*mat.Stride+1],
|
|
|
}
|
|
|
case RawTriangular:
|
|
|
mat := r.RawTriangular()
|
|
|
if mat.Diag == blas.Unit {
|
|
|
for i := 0; i < n; i += d.mat.Inc {
|
|
|
d.mat.Data[i] = 1
|
|
|
}
|
|
|
return
|
|
|
}
|
|
|
vec = blas64.Vector{
|
|
|
N: n,
|
|
|
Inc: mat.Stride + 1,
|
|
|
Data: mat.Data[:(n-1)*mat.Stride+n],
|
|
|
}
|
|
|
case RawVectorer:
|
|
|
d.mat.Data[0] = r.RawVector().Data[0]
|
|
|
return
|
|
|
default:
|
|
|
for i := 0; i < n; i++ {
|
|
|
d.setDiag(i, m.At(i, i))
|
|
|
}
|
|
|
return
|
|
|
}
|
|
|
blas64.Copy(vec, d.mat)
|
|
|
}
|
|
|
|
|
|
// RawBand returns the underlying data used by the receiver represented
|
|
|
// as a blas64.Band.
|
|
|
// Changes to elements in the receiver following the call will be reflected
|
|
|
// in returned blas64.Band.
|
|
|
func (d *DiagDense) RawBand() blas64.Band {
|
|
|
return blas64.Band{
|
|
|
Rows: d.mat.N,
|
|
|
Cols: d.mat.N,
|
|
|
KL: 0,
|
|
|
KU: 0,
|
|
|
Stride: d.mat.Inc,
|
|
|
Data: d.mat.Data,
|
|
|
}
|
|
|
}
|
|
|
|
|
|
// RawSymBand returns the underlying data used by the receiver represented
|
|
|
// as a blas64.SymmetricBand.
|
|
|
// Changes to elements in the receiver following the call will be reflected
|
|
|
// in returned blas64.Band.
|
|
|
func (d *DiagDense) RawSymBand() blas64.SymmetricBand {
|
|
|
return blas64.SymmetricBand{
|
|
|
N: d.mat.N,
|
|
|
K: 0,
|
|
|
Stride: d.mat.Inc,
|
|
|
Uplo: blas.Upper,
|
|
|
Data: d.mat.Data,
|
|
|
}
|
|
|
}
|
|
|
|
|
|
// reuseAs resizes an empty diagonal to a r×r diagonal,
|
|
|
// or checks that a non-empty matrix is r×r.
|
|
|
func (d *DiagDense) reuseAs(r int) {
|
|
|
if r == 0 {
|
|
|
panic(ErrZeroLength)
|
|
|
}
|
|
|
if d.IsZero() {
|
|
|
d.mat = blas64.Vector{
|
|
|
Inc: 1,
|
|
|
Data: use(d.mat.Data, r),
|
|
|
}
|
|
|
d.mat.N = r
|
|
|
return
|
|
|
}
|
|
|
if r != d.mat.N {
|
|
|
panic(ErrShape)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
// IsZero returns whether the receiver is zero-sized. Zero-sized vectors can be the
|
|
|
// receiver for size-restricted operations. DiagDenses can be zeroed using Reset.
|
|
|
func (d *DiagDense) IsZero() bool {
|
|
|
// It must be the case that d.Dims() returns
|
|
|
// zeros in this case. See comment in Reset().
|
|
|
return d.mat.Inc == 0
|
|
|
}
|