k3s/vendor/gonum.org/v1/gonum/lapack/gonum/dlatrd.go

166 lines
5.6 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
)
// Dlatrd reduces nb rows and columns of a real n×n symmetric matrix A to symmetric
// tridiagonal form. It computes the orthonormal similarity transformation
// Qᵀ * A * Q
// and returns the matrices V and W to apply to the unreduced part of A. If
// uplo == blas.Upper, the upper triangle is supplied and the last nb rows are
// reduced. If uplo == blas.Lower, the lower triangle is supplied and the first
// nb rows are reduced.
//
// a contains the symmetric matrix on entry with active triangular half specified
// by uplo. On exit, the nb columns have been reduced to tridiagonal form. The
// diagonal contains the diagonal of the reduced matrix, the off-diagonal is
// set to 1, and the remaining elements contain the data to construct Q.
//
// If uplo == blas.Upper, with n = 5 and nb = 2 on exit a is
// [ a a a v4 v5]
// [ a a v4 v5]
// [ a 1 v5]
// [ d 1]
// [ d]
//
// If uplo == blas.Lower, with n = 5 and nb = 2, on exit a is
// [ d ]
// [ 1 d ]
// [v1 1 a ]
// [v1 v2 a a ]
// [v1 v2 a a a]
//
// e contains the superdiagonal elements of the reduced matrix. If uplo == blas.Upper,
// e[n-nb:n-1] contains the last nb columns of the reduced matrix, while if
// uplo == blas.Lower, e[:nb] contains the first nb columns of the reduced matrix.
// e must have length at least n-1, and Dlatrd will panic otherwise.
//
// tau contains the scalar factors of the elementary reflectors needed to construct Q.
// The reflectors are stored in tau[n-nb:n-1] if uplo == blas.Upper, and in
// tau[:nb] if uplo == blas.Lower. tau must have length n-1, and Dlatrd will panic
// otherwise.
//
// w is an n×nb matrix. On exit it contains the data to update the unreduced part
// of A.
//
// The matrix Q is represented as a product of elementary reflectors. Each reflector
// H has the form
// I - tau * v * vᵀ
// If uplo == blas.Upper,
// Q = H_{n-1} * H_{n-2} * ... * H_{n-nb}
// where v[:i-1] is stored in A[:i-1,i], v[i-1] = 1, and v[i:n] = 0.
//
// If uplo == blas.Lower,
// Q = H_0 * H_1 * ... * H_{nb-1}
// where v[:i+1] = 0, v[i+1] = 1, and v[i+2:n] is stored in A[i+2:n,i].
//
// The vectors v form the n×nb matrix V which is used with W to apply a
// symmetric rank-2 update to the unreduced part of A
// A = A - V * Wᵀ - W * Vᵀ
//
// Dlatrd is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dlatrd(uplo blas.Uplo, n, nb int, a []float64, lda int, e, tau, w []float64, ldw int) {
switch {
case uplo != blas.Upper && uplo != blas.Lower:
panic(badUplo)
case n < 0:
panic(nLT0)
case nb < 0:
panic(nbLT0)
case nb > n:
panic(nbGTN)
case lda < max(1, n):
panic(badLdA)
case ldw < max(1, nb):
panic(badLdW)
}
if n == 0 {
return
}
switch {
case len(a) < (n-1)*lda+n:
panic(shortA)
case len(w) < (n-1)*ldw+nb:
panic(shortW)
case len(e) < n-1:
panic(shortE)
case len(tau) < n-1:
panic(shortTau)
}
bi := blas64.Implementation()
if uplo == blas.Upper {
for i := n - 1; i >= n-nb; i-- {
iw := i - n + nb
if i < n-1 {
// Update A(0:i, i).
bi.Dgemv(blas.NoTrans, i+1, n-i-1, -1, a[i+1:], lda,
w[i*ldw+iw+1:], 1, 1, a[i:], lda)
bi.Dgemv(blas.NoTrans, i+1, n-i-1, -1, w[iw+1:], ldw,
a[i*lda+i+1:], 1, 1, a[i:], lda)
}
if i > 0 {
// Generate elementary reflector H_i to annihilate A(0:i-2,i).
e[i-1], tau[i-1] = impl.Dlarfg(i, a[(i-1)*lda+i], a[i:], lda)
a[(i-1)*lda+i] = 1
// Compute W(0:i-1, i).
bi.Dsymv(blas.Upper, i, 1, a, lda, a[i:], lda, 0, w[iw:], ldw)
if i < n-1 {
bi.Dgemv(blas.Trans, i, n-i-1, 1, w[iw+1:], ldw,
a[i:], lda, 0, w[(i+1)*ldw+iw:], ldw)
bi.Dgemv(blas.NoTrans, i, n-i-1, -1, a[i+1:], lda,
w[(i+1)*ldw+iw:], ldw, 1, w[iw:], ldw)
bi.Dgemv(blas.Trans, i, n-i-1, 1, a[i+1:], lda,
a[i:], lda, 0, w[(i+1)*ldw+iw:], ldw)
bi.Dgemv(blas.NoTrans, i, n-i-1, -1, w[iw+1:], ldw,
w[(i+1)*ldw+iw:], ldw, 1, w[iw:], ldw)
}
bi.Dscal(i, tau[i-1], w[iw:], ldw)
alpha := -0.5 * tau[i-1] * bi.Ddot(i, w[iw:], ldw, a[i:], lda)
bi.Daxpy(i, alpha, a[i:], lda, w[iw:], ldw)
}
}
} else {
// Reduce first nb columns of lower triangle.
for i := 0; i < nb; i++ {
// Update A(i:n, i)
bi.Dgemv(blas.NoTrans, n-i, i, -1, a[i*lda:], lda,
w[i*ldw:], 1, 1, a[i*lda+i:], lda)
bi.Dgemv(blas.NoTrans, n-i, i, -1, w[i*ldw:], ldw,
a[i*lda:], 1, 1, a[i*lda+i:], lda)
if i < n-1 {
// Generate elementary reflector H_i to annihilate A(i+2:n,i).
e[i], tau[i] = impl.Dlarfg(n-i-1, a[(i+1)*lda+i], a[min(i+2, n-1)*lda+i:], lda)
a[(i+1)*lda+i] = 1
// Compute W(i+1:n,i).
bi.Dsymv(blas.Lower, n-i-1, 1, a[(i+1)*lda+i+1:], lda,
a[(i+1)*lda+i:], lda, 0, w[(i+1)*ldw+i:], ldw)
bi.Dgemv(blas.Trans, n-i-1, i, 1, w[(i+1)*ldw:], ldw,
a[(i+1)*lda+i:], lda, 0, w[i:], ldw)
bi.Dgemv(blas.NoTrans, n-i-1, i, -1, a[(i+1)*lda:], lda,
w[i:], ldw, 1, w[(i+1)*ldw+i:], ldw)
bi.Dgemv(blas.Trans, n-i-1, i, 1, a[(i+1)*lda:], lda,
a[(i+1)*lda+i:], lda, 0, w[i:], ldw)
bi.Dgemv(blas.NoTrans, n-i-1, i, -1, w[(i+1)*ldw:], ldw,
w[i:], ldw, 1, w[(i+1)*ldw+i:], ldw)
bi.Dscal(n-i-1, tau[i], w[(i+1)*ldw+i:], ldw)
alpha := -0.5 * tau[i] * bi.Ddot(n-i-1, w[(i+1)*ldw+i:], ldw,
a[(i+1)*lda+i:], lda)
bi.Daxpy(n-i-1, alpha, a[(i+1)*lda+i:], lda,
w[(i+1)*ldw+i:], ldw)
}
}
}
}