mirror of https://github.com/k3s-io/k3s
141 lines
3.5 KiB
Go
141 lines
3.5 KiB
Go
// Copyright ©2015 The Gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package gonum
|
|
|
|
import "math"
|
|
|
|
// Dlasq5 computes one dqds transform in ping-pong form.
|
|
// i0 and n0 are zero-indexed.
|
|
//
|
|
// Dlasq5 is an internal routine. It is exported for testing purposes.
|
|
func (impl Implementation) Dlasq5(i0, n0 int, z []float64, pp int, tau, sigma float64) (i0Out, n0Out, ppOut int, tauOut, sigmaOut, dmin, dmin1, dmin2, dn, dnm1, dnm2 float64) {
|
|
// The lapack function has inputs for ieee and eps, but Go requires ieee so
|
|
// these are unnecessary.
|
|
|
|
switch {
|
|
case i0 < 0:
|
|
panic(i0LT0)
|
|
case n0 < 0:
|
|
panic(n0LT0)
|
|
case len(z) < 4*n0:
|
|
panic(shortZ)
|
|
case pp != 0 && pp != 1:
|
|
panic(badPp)
|
|
}
|
|
|
|
if n0-i0-1 <= 0 {
|
|
return i0, n0, pp, tau, sigma, dmin, dmin1, dmin2, dn, dnm1, dnm2
|
|
}
|
|
|
|
eps := dlamchP
|
|
dthresh := eps * (sigma + tau)
|
|
if tau < dthresh*0.5 {
|
|
tau = 0
|
|
}
|
|
var j4 int
|
|
var emin float64
|
|
if tau != 0 {
|
|
j4 = 4*i0 + pp
|
|
emin = z[j4+4]
|
|
d := z[j4] - tau
|
|
dmin = d
|
|
// In the reference there are code paths that actually return this value.
|
|
// dmin1 = -z[j4]
|
|
if pp == 0 {
|
|
for j4loop := 4 * (i0 + 1); j4loop <= 4*((n0+1)-3); j4loop += 4 {
|
|
j4 := j4loop - 1
|
|
z[j4-2] = d + z[j4-1]
|
|
tmp := z[j4+1] / z[j4-2]
|
|
d = d*tmp - tau
|
|
dmin = math.Min(dmin, d)
|
|
z[j4] = z[j4-1] * tmp
|
|
emin = math.Min(z[j4], emin)
|
|
}
|
|
} else {
|
|
for j4loop := 4 * (i0 + 1); j4loop <= 4*((n0+1)-3); j4loop += 4 {
|
|
j4 := j4loop - 1
|
|
z[j4-3] = d + z[j4]
|
|
tmp := z[j4+2] / z[j4-3]
|
|
d = d*tmp - tau
|
|
dmin = math.Min(dmin, d)
|
|
z[j4-1] = z[j4] * tmp
|
|
emin = math.Min(z[j4-1], emin)
|
|
}
|
|
}
|
|
// Unroll the last two steps.
|
|
dnm2 = d
|
|
dmin2 = dmin
|
|
j4 = 4*((n0+1)-2) - pp - 1
|
|
j4p2 := j4 + 2*pp - 1
|
|
z[j4-2] = dnm2 + z[j4p2]
|
|
z[j4] = z[j4p2+2] * (z[j4p2] / z[j4-2])
|
|
dnm1 = z[j4p2+2]*(dnm2/z[j4-2]) - tau
|
|
dmin = math.Min(dmin, dnm1)
|
|
|
|
dmin1 = dmin
|
|
j4 += 4
|
|
j4p2 = j4 + 2*pp - 1
|
|
z[j4-2] = dnm1 + z[j4p2]
|
|
z[j4] = z[j4p2+2] * (z[j4p2] / z[j4-2])
|
|
dn = z[j4p2+2]*(dnm1/z[j4-2]) - tau
|
|
dmin = math.Min(dmin, dn)
|
|
} else {
|
|
// This is the version that sets d's to zero if they are small enough.
|
|
j4 = 4*(i0+1) + pp - 4
|
|
emin = z[j4+4]
|
|
d := z[j4] - tau
|
|
dmin = d
|
|
// In the reference there are code paths that actually return this value.
|
|
// dmin1 = -z[j4]
|
|
if pp == 0 {
|
|
for j4loop := 4 * (i0 + 1); j4loop <= 4*((n0+1)-3); j4loop += 4 {
|
|
j4 := j4loop - 1
|
|
z[j4-2] = d + z[j4-1]
|
|
tmp := z[j4+1] / z[j4-2]
|
|
d = d*tmp - tau
|
|
if d < dthresh {
|
|
d = 0
|
|
}
|
|
dmin = math.Min(dmin, d)
|
|
z[j4] = z[j4-1] * tmp
|
|
emin = math.Min(z[j4], emin)
|
|
}
|
|
} else {
|
|
for j4loop := 4 * (i0 + 1); j4loop <= 4*((n0+1)-3); j4loop += 4 {
|
|
j4 := j4loop - 1
|
|
z[j4-3] = d + z[j4]
|
|
tmp := z[j4+2] / z[j4-3]
|
|
d = d*tmp - tau
|
|
if d < dthresh {
|
|
d = 0
|
|
}
|
|
dmin = math.Min(dmin, d)
|
|
z[j4-1] = z[j4] * tmp
|
|
emin = math.Min(z[j4-1], emin)
|
|
}
|
|
}
|
|
// Unroll the last two steps.
|
|
dnm2 = d
|
|
dmin2 = dmin
|
|
j4 = 4*((n0+1)-2) - pp - 1
|
|
j4p2 := j4 + 2*pp - 1
|
|
z[j4-2] = dnm2 + z[j4p2]
|
|
z[j4] = z[j4p2+2] * (z[j4p2] / z[j4-2])
|
|
dnm1 = z[j4p2+2]*(dnm2/z[j4-2]) - tau
|
|
dmin = math.Min(dmin, dnm1)
|
|
|
|
dmin1 = dmin
|
|
j4 += 4
|
|
j4p2 = j4 + 2*pp - 1
|
|
z[j4-2] = dnm1 + z[j4p2]
|
|
z[j4] = z[j4p2+2] * (z[j4p2] / z[j4-2])
|
|
dn = z[j4p2+2]*(dnm1/z[j4-2]) - tau
|
|
dmin = math.Min(dmin, dn)
|
|
}
|
|
z[j4+2] = dn
|
|
z[4*(n0+1)-pp-1] = emin
|
|
return i0, n0, pp, tau, sigma, dmin, dmin1, dmin2, dn, dnm1, dnm2
|
|
}
|