mirror of https://github.com/k3s-io/k3s
69 lines
1.9 KiB
Go
69 lines
1.9 KiB
Go
// Copyright ©2017 The Gonum Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package gonum
|
||
|
||
import "gonum.org/v1/gonum/blas"
|
||
|
||
// Dgerq2 computes an RQ factorization of the m×n matrix A,
|
||
// A = R * Q.
|
||
// On exit, if m <= n, the upper triangle of the subarray
|
||
// A[0:m, n-m:n] contains the m×m upper triangular matrix R.
|
||
// If m >= n, the elements on and above the (m-n)-th subdiagonal
|
||
// contain the m×n upper trapezoidal matrix R.
|
||
// The remaining elements, with tau, represent the
|
||
// orthogonal matrix Q as a product of min(m,n) elementary
|
||
// reflectors.
|
||
//
|
||
// The matrix Q is represented as a product of elementary reflectors
|
||
// Q = H_0 H_1 . . . H_{min(m,n)-1}.
|
||
// Each H(i) has the form
|
||
// H_i = I - tau_i * v * vᵀ
|
||
// where v is a vector with v[0:n-k+i-1] stored in A[m-k+i, 0:n-k+i-1],
|
||
// v[n-k+i:n] = 0 and v[n-k+i] = 1.
|
||
//
|
||
// tau must have length min(m,n) and work must have length m, otherwise
|
||
// Dgerq2 will panic.
|
||
//
|
||
// Dgerq2 is an internal routine. It is exported for testing purposes.
|
||
func (impl Implementation) Dgerq2(m, n int, a []float64, lda int, tau, work []float64) {
|
||
switch {
|
||
case m < 0:
|
||
panic(mLT0)
|
||
case n < 0:
|
||
panic(nLT0)
|
||
case lda < max(1, n):
|
||
panic(badLdA)
|
||
case len(work) < m:
|
||
panic(shortWork)
|
||
}
|
||
|
||
// Quick return if possible.
|
||
k := min(m, n)
|
||
if k == 0 {
|
||
return
|
||
}
|
||
|
||
switch {
|
||
case len(a) < (m-1)*lda+n:
|
||
panic(shortA)
|
||
case len(tau) < k:
|
||
panic(shortTau)
|
||
}
|
||
|
||
for i := k - 1; i >= 0; i-- {
|
||
// Generate elementary reflector H[i] to annihilate
|
||
// A[m-k+i, 0:n-k+i-1].
|
||
mki := m - k + i
|
||
nki := n - k + i
|
||
var aii float64
|
||
aii, tau[i] = impl.Dlarfg(nki+1, a[mki*lda+nki], a[mki*lda:], 1)
|
||
|
||
// Apply H[i] to A[0:m-k+i-1, 0:n-k+i] from the right.
|
||
a[mki*lda+nki] = 1
|
||
impl.Dlarf(blas.Right, mki, nki+1, a[mki*lda:], 1, tau[i], a, lda, work)
|
||
a[mki*lda+nki] = aii
|
||
}
|
||
}
|