k3s/vendor/gonum.org/v1/gonum/lapack/gonum/dgelqf.go

98 lines
2.5 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/lapack"
)
// Dgelqf computes the LQ factorization of the m×n matrix A using a blocked
// algorithm. See the documentation for Dgelq2 for a description of the
// parameters at entry and exit.
//
// work is temporary storage, and lwork specifies the usable memory length.
// At minimum, lwork >= m, and this function will panic otherwise.
// Dgelqf is a blocked LQ factorization, but the block size is limited
// by the temporary space available. If lwork == -1, instead of performing Dgelqf,
// the optimal work length will be stored into work[0].
//
// tau must have length at least min(m,n), and this function will panic otherwise.
func (impl Implementation) Dgelqf(m, n int, a []float64, lda int, tau, work []float64, lwork int) {
switch {
case m < 0:
panic(mLT0)
case n < 0:
panic(nLT0)
case lda < max(1, n):
panic(badLdA)
case lwork < max(1, m) && lwork != -1:
panic(badLWork)
case len(work) < max(1, lwork):
panic(shortWork)
}
k := min(m, n)
if k == 0 {
work[0] = 1
return
}
nb := impl.Ilaenv(1, "DGELQF", " ", m, n, -1, -1)
if lwork == -1 {
work[0] = float64(m * nb)
return
}
if len(a) < (m-1)*lda+n {
panic(shortA)
}
if len(tau) < k {
panic(shortTau)
}
// Find the optimal blocking size based on the size of available memory
// and optimal machine parameters.
nbmin := 2
var nx int
iws := m
if 1 < nb && nb < k {
nx = max(0, impl.Ilaenv(3, "DGELQF", " ", m, n, -1, -1))
if nx < k {
iws = m * nb
if lwork < iws {
nb = lwork / m
nbmin = max(2, impl.Ilaenv(2, "DGELQF", " ", m, n, -1, -1))
}
}
}
ldwork := nb
// Computed blocked LQ factorization.
var i int
if nbmin <= nb && nb < k && nx < k {
for i = 0; i < k-nx; i += nb {
ib := min(k-i, nb)
impl.Dgelq2(ib, n-i, a[i*lda+i:], lda, tau[i:], work)
if i+ib < m {
impl.Dlarft(lapack.Forward, lapack.RowWise, n-i, ib,
a[i*lda+i:], lda,
tau[i:],
work, ldwork)
impl.Dlarfb(blas.Right, blas.NoTrans, lapack.Forward, lapack.RowWise,
m-i-ib, n-i, ib,
a[i*lda+i:], lda,
work, ldwork,
a[(i+ib)*lda+i:], lda,
work[ib*ldwork:], ldwork)
}
}
}
// Perform unblocked LQ factorization on the remainder.
if i < k {
impl.Dgelq2(m-i, n-i, a[i*lda+i:], lda, tau[i:], work)
}
work[0] = float64(iws)
}