mirror of https://github.com/k3s-io/k3s
98 lines
3.2 KiB
Go
98 lines
3.2 KiB
Go
// Copyright ©2016 The Gonum Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package gonum
|
||
|
||
import "gonum.org/v1/gonum/blas"
|
||
|
||
// Dgehd2 reduces a block of a general n×n matrix A to upper Hessenberg form H
|
||
// by an orthogonal similarity transformation Qᵀ * A * Q = H.
|
||
//
|
||
// The matrix Q is represented as a product of (ihi-ilo) elementary
|
||
// reflectors
|
||
// Q = H_{ilo} H_{ilo+1} ... H_{ihi-1}.
|
||
// Each H_i has the form
|
||
// H_i = I - tau[i] * v * vᵀ
|
||
// where v is a real vector with v[0:i+1] = 0, v[i+1] = 1 and v[ihi+1:n] = 0.
|
||
// v[i+2:ihi+1] is stored on exit in A[i+2:ihi+1,i].
|
||
//
|
||
// On entry, a contains the n×n general matrix to be reduced. On return, the
|
||
// upper triangle and the first subdiagonal of A are overwritten with the upper
|
||
// Hessenberg matrix H, and the elements below the first subdiagonal, with the
|
||
// slice tau, represent the orthogonal matrix Q as a product of elementary
|
||
// reflectors.
|
||
//
|
||
// The contents of A are illustrated by the following example, with n = 7, ilo =
|
||
// 1 and ihi = 5.
|
||
// On entry,
|
||
// [ a a a a a a a ]
|
||
// [ a a a a a a ]
|
||
// [ a a a a a a ]
|
||
// [ a a a a a a ]
|
||
// [ a a a a a a ]
|
||
// [ a a a a a a ]
|
||
// [ a ]
|
||
// on return,
|
||
// [ a a h h h h a ]
|
||
// [ a h h h h a ]
|
||
// [ h h h h h h ]
|
||
// [ v1 h h h h h ]
|
||
// [ v1 v2 h h h h ]
|
||
// [ v1 v2 v3 h h h ]
|
||
// [ a ]
|
||
// where a denotes an element of the original matrix A, h denotes a
|
||
// modified element of the upper Hessenberg matrix H, and vi denotes an
|
||
// element of the vector defining H_i.
|
||
//
|
||
// ilo and ihi determine the block of A that will be reduced to upper Hessenberg
|
||
// form. It must hold that 0 <= ilo <= ihi <= max(0, n-1), otherwise Dgehd2 will
|
||
// panic.
|
||
//
|
||
// On return, tau will contain the scalar factors of the elementary reflectors.
|
||
// It must have length equal to n-1, otherwise Dgehd2 will panic.
|
||
//
|
||
// work must have length at least n, otherwise Dgehd2 will panic.
|
||
//
|
||
// Dgehd2 is an internal routine. It is exported for testing purposes.
|
||
func (impl Implementation) Dgehd2(n, ilo, ihi int, a []float64, lda int, tau, work []float64) {
|
||
switch {
|
||
case n < 0:
|
||
panic(nLT0)
|
||
case ilo < 0 || max(0, n-1) < ilo:
|
||
panic(badIlo)
|
||
case ihi < min(ilo, n-1) || n <= ihi:
|
||
panic(badIhi)
|
||
case lda < max(1, n):
|
||
panic(badLdA)
|
||
}
|
||
|
||
// Quick return if possible.
|
||
if n == 0 {
|
||
return
|
||
}
|
||
|
||
switch {
|
||
case len(a) < (n-1)*lda+n:
|
||
panic(shortA)
|
||
case len(tau) != n-1:
|
||
panic(badLenTau)
|
||
case len(work) < n:
|
||
panic(shortWork)
|
||
}
|
||
|
||
for i := ilo; i < ihi; i++ {
|
||
// Compute elementary reflector H_i to annihilate A[i+2:ihi+1,i].
|
||
var aii float64
|
||
aii, tau[i] = impl.Dlarfg(ihi-i, a[(i+1)*lda+i], a[min(i+2, n-1)*lda+i:], lda)
|
||
a[(i+1)*lda+i] = 1
|
||
|
||
// Apply H_i to A[0:ihi+1,i+1:ihi+1] from the right.
|
||
impl.Dlarf(blas.Right, ihi+1, ihi-i, a[(i+1)*lda+i:], lda, tau[i], a[i+1:], lda, work)
|
||
|
||
// Apply H_i to A[i+1:ihi+1,i+1:n] from the left.
|
||
impl.Dlarf(blas.Left, ihi-i, n-i-1, a[(i+1)*lda+i:], lda, tau[i], a[(i+1)*lda+i+1:], lda, work)
|
||
a[(i+1)*lda+i] = aii
|
||
}
|
||
}
|