k3s/vendor/gonum.org/v1/gonum/mat/solve.go

141 lines
3.4 KiB
Go

// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/lapack/lapack64"
)
// Solve finds a minimum-norm solution to a system of linear equations defined
// by the matrices A and B. If A is singular or near-singular, a Condition error
// is returned. See the documentation for Condition for more information.
//
// The minimization problem solved depends on the input parameters:
// - if m >= n, find X such that ||A*X - B||_2 is minimized,
// - if m < n, find the minimum norm solution of A * X = B.
// The solution matrix, X, is stored in-place into the receiver.
func (m *Dense) Solve(a, b Matrix) error {
ar, ac := a.Dims()
br, bc := b.Dims()
if ar != br {
panic(ErrShape)
}
m.reuseAsNonZeroed(ac, bc)
// TODO(btracey): Add special cases for SymDense, etc.
aU, aTrans := untranspose(a)
bU, bTrans := untranspose(b)
switch rma := aU.(type) {
case RawTriangular:
side := blas.Left
tA := blas.NoTrans
if aTrans {
tA = blas.Trans
}
switch rm := bU.(type) {
case RawMatrixer:
if m != bU || bTrans {
if m == bU || m.checkOverlap(rm.RawMatrix()) {
tmp := getWorkspace(br, bc, false)
tmp.Copy(b)
m.Copy(tmp)
putWorkspace(tmp)
break
}
m.Copy(b)
}
default:
if m != bU {
m.Copy(b)
} else if bTrans {
// m and b share data so Copy cannot be used directly.
tmp := getWorkspace(br, bc, false)
tmp.Copy(b)
m.Copy(tmp)
putWorkspace(tmp)
}
}
rm := rma.RawTriangular()
blas64.Trsm(side, tA, 1, rm, m.mat)
work := getFloats(3*rm.N, false)
iwork := getInts(rm.N, false)
cond := lapack64.Trcon(CondNorm, rm, work, iwork)
putFloats(work)
putInts(iwork)
if cond > ConditionTolerance {
return Condition(cond)
}
return nil
}
switch {
case ar == ac:
if a == b {
// x = I.
if ar == 1 {
m.mat.Data[0] = 1
return nil
}
for i := 0; i < ar; i++ {
v := m.mat.Data[i*m.mat.Stride : i*m.mat.Stride+ac]
zero(v)
v[i] = 1
}
return nil
}
var lu LU
lu.Factorize(a)
return lu.SolveTo(m, false, b)
case ar > ac:
var qr QR
qr.Factorize(a)
return qr.SolveTo(m, false, b)
default:
var lq LQ
lq.Factorize(a)
return lq.SolveTo(m, false, b)
}
}
// SolveVec finds a minimum-norm solution to a system of linear equations defined
// by the matrix a and the right-hand side column vector b. If A is singular or
// near-singular, a Condition error is returned. See the documentation for
// Dense.Solve for more information.
func (v *VecDense) SolveVec(a Matrix, b Vector) error {
if _, bc := b.Dims(); bc != 1 {
panic(ErrShape)
}
_, c := a.Dims()
// The Solve implementation is non-trivial, so rather than duplicate the code,
// instead recast the VecDenses as Dense and call the matrix code.
if rv, ok := b.(RawVectorer); ok {
bmat := rv.RawVector()
if v != b {
v.checkOverlap(bmat)
}
v.reuseAsNonZeroed(c)
m := v.asDense()
// We conditionally create bm as m when b and v are identical
// to prevent the overlap detection code from identifying m
// and bm as overlapping but not identical.
bm := m
if v != b {
b := VecDense{mat: bmat}
bm = b.asDense()
}
return m.Solve(a, bm)
}
v.reuseAsNonZeroed(c)
m := v.asDense()
return m.Solve(a, b)
}