k3s/vendor/gonum.org/v1/gonum/blas/blas64/blas64.go

473 lines
15 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package blas64
import (
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/gonum"
)
var blas64 blas.Float64 = gonum.Implementation{}
// Use sets the BLAS float64 implementation to be used by subsequent BLAS calls.
// The default implementation is
// gonum.org/v1/gonum/blas/gonum.Implementation.
func Use(b blas.Float64) {
blas64 = b
}
// Implementation returns the current BLAS float64 implementation.
//
// Implementation allows direct calls to the current the BLAS float64 implementation
// giving finer control of parameters.
func Implementation() blas.Float64 {
return blas64
}
// Vector represents a vector with an associated element increment.
type Vector struct {
N int
Data []float64
Inc int
}
// General represents a matrix using the conventional storage scheme.
type General struct {
Rows, Cols int
Data []float64
Stride int
}
// Band represents a band matrix using the band storage scheme.
type Band struct {
Rows, Cols int
KL, KU int
Data []float64
Stride int
}
// Triangular represents a triangular matrix using the conventional storage scheme.
type Triangular struct {
Uplo blas.Uplo
Diag blas.Diag
N int
Data []float64
Stride int
}
// TriangularBand represents a triangular matrix using the band storage scheme.
type TriangularBand struct {
Uplo blas.Uplo
Diag blas.Diag
N, K int
Data []float64
Stride int
}
// TriangularPacked represents a triangular matrix using the packed storage scheme.
type TriangularPacked struct {
Uplo blas.Uplo
Diag blas.Diag
N int
Data []float64
}
// Symmetric represents a symmetric matrix using the conventional storage scheme.
type Symmetric struct {
Uplo blas.Uplo
N int
Data []float64
Stride int
}
// SymmetricBand represents a symmetric matrix using the band storage scheme.
type SymmetricBand struct {
Uplo blas.Uplo
N, K int
Data []float64
Stride int
}
// SymmetricPacked represents a symmetric matrix using the packed storage scheme.
type SymmetricPacked struct {
Uplo blas.Uplo
N int
Data []float64
}
// Level 1
const (
negInc = "blas64: negative vector increment"
badLength = "blas64: vector length mismatch"
)
// Dot computes the dot product of the two vectors:
// \sum_i x[i]*y[i].
// Dot will panic if the lengths of x and y do not match.
func Dot(x, y Vector) float64 {
if x.N != y.N {
panic(badLength)
}
return blas64.Ddot(x.N, x.Data, x.Inc, y.Data, y.Inc)
}
// Nrm2 computes the Euclidean norm of the vector x:
// sqrt(\sum_i x[i]*x[i]).
//
// Nrm2 will panic if the vector increment is negative.
func Nrm2(x Vector) float64 {
if x.Inc < 0 {
panic(negInc)
}
return blas64.Dnrm2(x.N, x.Data, x.Inc)
}
// Asum computes the sum of the absolute values of the elements of x:
// \sum_i |x[i]|.
//
// Asum will panic if the vector increment is negative.
func Asum(x Vector) float64 {
if x.Inc < 0 {
panic(negInc)
}
return blas64.Dasum(x.N, x.Data, x.Inc)
}
// Iamax returns the index of an element of x with the largest absolute value.
// If there are multiple such indices the earliest is returned.
// Iamax returns -1 if n == 0.
//
// Iamax will panic if the vector increment is negative.
func Iamax(x Vector) int {
if x.Inc < 0 {
panic(negInc)
}
return blas64.Idamax(x.N, x.Data, x.Inc)
}
// Swap exchanges the elements of the two vectors:
// x[i], y[i] = y[i], x[i] for all i.
// Swap will panic if the lengths of x and y do not match.
func Swap(x, y Vector) {
if x.N != y.N {
panic(badLength)
}
blas64.Dswap(x.N, x.Data, x.Inc, y.Data, y.Inc)
}
// Copy copies the elements of x into the elements of y:
// y[i] = x[i] for all i.
// Copy will panic if the lengths of x and y do not match.
func Copy(x, y Vector) {
if x.N != y.N {
panic(badLength)
}
blas64.Dcopy(x.N, x.Data, x.Inc, y.Data, y.Inc)
}
// Axpy adds x scaled by alpha to y:
// y[i] += alpha*x[i] for all i.
// Axpy will panic if the lengths of x and y do not match.
func Axpy(alpha float64, x, y Vector) {
if x.N != y.N {
panic(badLength)
}
blas64.Daxpy(x.N, alpha, x.Data, x.Inc, y.Data, y.Inc)
}
// Rotg computes the parameters of a Givens plane rotation so that
// ⎡ c s⎤ ⎡a⎤ ⎡r⎤
// ⎣-s c⎦ * ⎣b⎦ = ⎣0⎦
// where a and b are the Cartesian coordinates of a given point.
// c, s, and r are defined as
// r = ±Sqrt(a^2 + b^2),
// c = a/r, the cosine of the rotation angle,
// s = a/r, the sine of the rotation angle,
// and z is defined such that
// if |a| > |b|, z = s,
// otherwise if c != 0, z = 1/c,
// otherwise z = 1.
func Rotg(a, b float64) (c, s, r, z float64) {
return blas64.Drotg(a, b)
}
// Rotmg computes the modified Givens rotation. See
// http://www.netlib.org/lapack/explore-html/df/deb/drotmg_8f.html
// for more details.
func Rotmg(d1, d2, b1, b2 float64) (p blas.DrotmParams, rd1, rd2, rb1 float64) {
return blas64.Drotmg(d1, d2, b1, b2)
}
// Rot applies a plane transformation to n points represented by the vectors x
// and y:
// x[i] = c*x[i] + s*y[i],
// y[i] = -s*x[i] + c*y[i], for all i.
func Rot(x, y Vector, c, s float64) {
if x.N != y.N {
panic(badLength)
}
blas64.Drot(x.N, x.Data, x.Inc, y.Data, y.Inc, c, s)
}
// Rotm applies the modified Givens rotation to n points represented by the
// vectors x and y.
func Rotm(x, y Vector, p blas.DrotmParams) {
if x.N != y.N {
panic(badLength)
}
blas64.Drotm(x.N, x.Data, x.Inc, y.Data, y.Inc, p)
}
// Scal scales the vector x by alpha:
// x[i] *= alpha for all i.
//
// Scal will panic if the vector increment is negative.
func Scal(alpha float64, x Vector) {
if x.Inc < 0 {
panic(negInc)
}
blas64.Dscal(x.N, alpha, x.Data, x.Inc)
}
// Level 2
// Gemv computes
// y = alpha * A * x + beta * y if t == blas.NoTrans,
// y = alpha * Aᵀ * x + beta * y if t == blas.Trans or blas.ConjTrans,
// where A is an m×n dense matrix, x and y are vectors, and alpha and beta are scalars.
func Gemv(t blas.Transpose, alpha float64, a General, x Vector, beta float64, y Vector) {
blas64.Dgemv(t, a.Rows, a.Cols, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc)
}
// Gbmv computes
// y = alpha * A * x + beta * y if t == blas.NoTrans,
// y = alpha * Aᵀ * x + beta * y if t == blas.Trans or blas.ConjTrans,
// where A is an m×n band matrix, x and y are vectors, and alpha and beta are scalars.
func Gbmv(t blas.Transpose, alpha float64, a Band, x Vector, beta float64, y Vector) {
blas64.Dgbmv(t, a.Rows, a.Cols, a.KL, a.KU, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc)
}
// Trmv computes
// x = A * x if t == blas.NoTrans,
// x = Aᵀ * x if t == blas.Trans or blas.ConjTrans,
// where A is an n×n triangular matrix, and x is a vector.
func Trmv(t blas.Transpose, a Triangular, x Vector) {
blas64.Dtrmv(a.Uplo, t, a.Diag, a.N, a.Data, a.Stride, x.Data, x.Inc)
}
// Tbmv computes
// x = A * x if t == blas.NoTrans,
// x = Aᵀ * x if t == blas.Trans or blas.ConjTrans,
// where A is an n×n triangular band matrix, and x is a vector.
func Tbmv(t blas.Transpose, a TriangularBand, x Vector) {
blas64.Dtbmv(a.Uplo, t, a.Diag, a.N, a.K, a.Data, a.Stride, x.Data, x.Inc)
}
// Tpmv computes
// x = A * x if t == blas.NoTrans,
// x = Aᵀ * x if t == blas.Trans or blas.ConjTrans,
// where A is an n×n triangular matrix in packed format, and x is a vector.
func Tpmv(t blas.Transpose, a TriangularPacked, x Vector) {
blas64.Dtpmv(a.Uplo, t, a.Diag, a.N, a.Data, x.Data, x.Inc)
}
// Trsv solves
// A * x = b if t == blas.NoTrans,
// Aᵀ * x = b if t == blas.Trans or blas.ConjTrans,
// where A is an n×n triangular matrix, and x and b are vectors.
//
// At entry to the function, x contains the values of b, and the result is
// stored in-place into x.
//
// No test for singularity or near-singularity is included in this
// routine. Such tests must be performed before calling this routine.
func Trsv(t blas.Transpose, a Triangular, x Vector) {
blas64.Dtrsv(a.Uplo, t, a.Diag, a.N, a.Data, a.Stride, x.Data, x.Inc)
}
// Tbsv solves
// A * x = b if t == blas.NoTrans,
// Aᵀ * x = b if t == blas.Trans or blas.ConjTrans,
// where A is an n×n triangular band matrix, and x and b are vectors.
//
// At entry to the function, x contains the values of b, and the result is
// stored in place into x.
//
// No test for singularity or near-singularity is included in this
// routine. Such tests must be performed before calling this routine.
func Tbsv(t blas.Transpose, a TriangularBand, x Vector) {
blas64.Dtbsv(a.Uplo, t, a.Diag, a.N, a.K, a.Data, a.Stride, x.Data, x.Inc)
}
// Tpsv solves
// A * x = b if t == blas.NoTrans,
// Aᵀ * x = b if t == blas.Trans or blas.ConjTrans,
// where A is an n×n triangular matrix in packed format, and x and b are
// vectors.
//
// At entry to the function, x contains the values of b, and the result is
// stored in place into x.
//
// No test for singularity or near-singularity is included in this
// routine. Such tests must be performed before calling this routine.
func Tpsv(t blas.Transpose, a TriangularPacked, x Vector) {
blas64.Dtpsv(a.Uplo, t, a.Diag, a.N, a.Data, x.Data, x.Inc)
}
// Symv computes
// y = alpha * A * x + beta * y,
// where A is an n×n symmetric matrix, x and y are vectors, and alpha and
// beta are scalars.
func Symv(alpha float64, a Symmetric, x Vector, beta float64, y Vector) {
blas64.Dsymv(a.Uplo, a.N, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc)
}
// Sbmv performs
// y = alpha * A * x + beta * y,
// where A is an n×n symmetric band matrix, x and y are vectors, and alpha
// and beta are scalars.
func Sbmv(alpha float64, a SymmetricBand, x Vector, beta float64, y Vector) {
blas64.Dsbmv(a.Uplo, a.N, a.K, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc)
}
// Spmv performs
// y = alpha * A * x + beta * y,
// where A is an n×n symmetric matrix in packed format, x and y are vectors,
// and alpha and beta are scalars.
func Spmv(alpha float64, a SymmetricPacked, x Vector, beta float64, y Vector) {
blas64.Dspmv(a.Uplo, a.N, alpha, a.Data, x.Data, x.Inc, beta, y.Data, y.Inc)
}
// Ger performs a rank-1 update
// A += alpha * x * yᵀ,
// where A is an m×n dense matrix, x and y are vectors, and alpha is a scalar.
func Ger(alpha float64, x, y Vector, a General) {
blas64.Dger(a.Rows, a.Cols, alpha, x.Data, x.Inc, y.Data, y.Inc, a.Data, a.Stride)
}
// Syr performs a rank-1 update
// A += alpha * x * xᵀ,
// where A is an n×n symmetric matrix, x is a vector, and alpha is a scalar.
func Syr(alpha float64, x Vector, a Symmetric) {
blas64.Dsyr(a.Uplo, a.N, alpha, x.Data, x.Inc, a.Data, a.Stride)
}
// Spr performs the rank-1 update
// A += alpha * x * xᵀ,
// where A is an n×n symmetric matrix in packed format, x is a vector, and
// alpha is a scalar.
func Spr(alpha float64, x Vector, a SymmetricPacked) {
blas64.Dspr(a.Uplo, a.N, alpha, x.Data, x.Inc, a.Data)
}
// Syr2 performs a rank-2 update
// A += alpha * x * yᵀ + alpha * y * xᵀ,
// where A is a symmetric n×n matrix, x and y are vectors, and alpha is a scalar.
func Syr2(alpha float64, x, y Vector, a Symmetric) {
blas64.Dsyr2(a.Uplo, a.N, alpha, x.Data, x.Inc, y.Data, y.Inc, a.Data, a.Stride)
}
// Spr2 performs a rank-2 update
// A += alpha * x * yᵀ + alpha * y * xᵀ,
// where A is an n×n symmetric matrix in packed format, x and y are vectors,
// and alpha is a scalar.
func Spr2(alpha float64, x, y Vector, a SymmetricPacked) {
blas64.Dspr2(a.Uplo, a.N, alpha, x.Data, x.Inc, y.Data, y.Inc, a.Data)
}
// Level 3
// Gemm computes
// C = alpha * A * B + beta * C,
// where A, B, and C are dense matrices, and alpha and beta are scalars.
// tA and tB specify whether A or B are transposed.
func Gemm(tA, tB blas.Transpose, alpha float64, a, b General, beta float64, c General) {
var m, n, k int
if tA == blas.NoTrans {
m, k = a.Rows, a.Cols
} else {
m, k = a.Cols, a.Rows
}
if tB == blas.NoTrans {
n = b.Cols
} else {
n = b.Rows
}
blas64.Dgemm(tA, tB, m, n, k, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride)
}
// Symm performs
// C = alpha * A * B + beta * C if s == blas.Left,
// C = alpha * B * A + beta * C if s == blas.Right,
// where A is an n×n or m×m symmetric matrix, B and C are m×n matrices, and
// alpha is a scalar.
func Symm(s blas.Side, alpha float64, a Symmetric, b General, beta float64, c General) {
var m, n int
if s == blas.Left {
m, n = a.N, b.Cols
} else {
m, n = b.Rows, a.N
}
blas64.Dsymm(s, a.Uplo, m, n, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride)
}
// Syrk performs a symmetric rank-k update
// C = alpha * A * Aᵀ + beta * C if t == blas.NoTrans,
// C = alpha * Aᵀ * A + beta * C if t == blas.Trans or blas.ConjTrans,
// where C is an n×n symmetric matrix, A is an n×k matrix if t == blas.NoTrans and
// a k×n matrix otherwise, and alpha and beta are scalars.
func Syrk(t blas.Transpose, alpha float64, a General, beta float64, c Symmetric) {
var n, k int
if t == blas.NoTrans {
n, k = a.Rows, a.Cols
} else {
n, k = a.Cols, a.Rows
}
blas64.Dsyrk(c.Uplo, t, n, k, alpha, a.Data, a.Stride, beta, c.Data, c.Stride)
}
// Syr2k performs a symmetric rank-2k update
// C = alpha * A * Bᵀ + alpha * B * Aᵀ + beta * C if t == blas.NoTrans,
// C = alpha * Aᵀ * B + alpha * Bᵀ * A + beta * C if t == blas.Trans or blas.ConjTrans,
// where C is an n×n symmetric matrix, A and B are n×k matrices if t == NoTrans
// and k×n matrices otherwise, and alpha and beta are scalars.
func Syr2k(t blas.Transpose, alpha float64, a, b General, beta float64, c Symmetric) {
var n, k int
if t == blas.NoTrans {
n, k = a.Rows, a.Cols
} else {
n, k = a.Cols, a.Rows
}
blas64.Dsyr2k(c.Uplo, t, n, k, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride)
}
// Trmm performs
// B = alpha * A * B if tA == blas.NoTrans and s == blas.Left,
// B = alpha * Aᵀ * B if tA == blas.Trans or blas.ConjTrans, and s == blas.Left,
// B = alpha * B * A if tA == blas.NoTrans and s == blas.Right,
// B = alpha * B * Aᵀ if tA == blas.Trans or blas.ConjTrans, and s == blas.Right,
// where A is an n×n or m×m triangular matrix, B is an m×n matrix, and alpha is
// a scalar.
func Trmm(s blas.Side, tA blas.Transpose, alpha float64, a Triangular, b General) {
blas64.Dtrmm(s, a.Uplo, tA, a.Diag, b.Rows, b.Cols, alpha, a.Data, a.Stride, b.Data, b.Stride)
}
// Trsm solves
// A * X = alpha * B if tA == blas.NoTrans and s == blas.Left,
// Aᵀ * X = alpha * B if tA == blas.Trans or blas.ConjTrans, and s == blas.Left,
// X * A = alpha * B if tA == blas.NoTrans and s == blas.Right,
// X * Aᵀ = alpha * B if tA == blas.Trans or blas.ConjTrans, and s == blas.Right,
// where A is an n×n or m×m triangular matrix, X and B are m×n matrices, and
// alpha is a scalar.
//
// At entry to the function, X contains the values of B, and the result is
// stored in-place into X.
//
// No check is made that A is invertible.
func Trsm(s blas.Side, tA blas.Transpose, alpha float64, a Triangular, b General) {
blas64.Dtrsm(s, a.Uplo, tA, a.Diag, b.Rows, b.Cols, alpha, a.Data, a.Stride, b.Data, b.Stride)
}