mirror of https://github.com/k3s-io/k3s
297 lines
10 KiB
Go
297 lines
10 KiB
Go
/*
|
|
Copyright 2017 The Kubernetes Authors.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
*/
|
|
|
|
package scheduling
|
|
|
|
import (
|
|
"os"
|
|
"regexp"
|
|
"time"
|
|
|
|
v1 "k8s.io/api/core/v1"
|
|
"k8s.io/apimachinery/pkg/api/resource"
|
|
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
|
|
"k8s.io/apimachinery/pkg/util/uuid"
|
|
extensionsinternal "k8s.io/kubernetes/pkg/apis/extensions"
|
|
"k8s.io/kubernetes/test/e2e/framework"
|
|
"k8s.io/kubernetes/test/e2e/framework/gpu"
|
|
jobutil "k8s.io/kubernetes/test/e2e/framework/job"
|
|
e2elog "k8s.io/kubernetes/test/e2e/framework/log"
|
|
"k8s.io/kubernetes/test/e2e/framework/providers/gce"
|
|
imageutils "k8s.io/kubernetes/test/utils/image"
|
|
|
|
"github.com/onsi/ginkgo"
|
|
"github.com/onsi/gomega"
|
|
)
|
|
|
|
const (
|
|
testPodNamePrefix = "nvidia-gpu-"
|
|
// Nvidia driver installation can take upwards of 5 minutes.
|
|
driverInstallTimeout = 10 * time.Minute
|
|
)
|
|
|
|
var (
|
|
gpuResourceName v1.ResourceName
|
|
dsYamlURL string
|
|
)
|
|
|
|
func makeCudaAdditionDevicePluginTestPod() *v1.Pod {
|
|
podName := testPodNamePrefix + string(uuid.NewUUID())
|
|
testPod := &v1.Pod{
|
|
ObjectMeta: metav1.ObjectMeta{
|
|
Name: podName,
|
|
},
|
|
Spec: v1.PodSpec{
|
|
RestartPolicy: v1.RestartPolicyNever,
|
|
Containers: []v1.Container{
|
|
{
|
|
Name: "vector-addition-cuda8",
|
|
Image: imageutils.GetE2EImage(imageutils.CudaVectorAdd),
|
|
Resources: v1.ResourceRequirements{
|
|
Limits: v1.ResourceList{
|
|
gpuResourceName: *resource.NewQuantity(1, resource.DecimalSI),
|
|
},
|
|
},
|
|
},
|
|
{
|
|
Name: "vector-addition-cuda10",
|
|
Image: imageutils.GetE2EImage(imageutils.CudaVectorAdd2),
|
|
Resources: v1.ResourceRequirements{
|
|
Limits: v1.ResourceList{
|
|
gpuResourceName: *resource.NewQuantity(1, resource.DecimalSI),
|
|
},
|
|
},
|
|
},
|
|
},
|
|
},
|
|
}
|
|
return testPod
|
|
}
|
|
|
|
func logOSImages(f *framework.Framework) {
|
|
nodeList, err := f.ClientSet.CoreV1().Nodes().List(metav1.ListOptions{})
|
|
framework.ExpectNoError(err, "getting node list")
|
|
for _, node := range nodeList.Items {
|
|
e2elog.Logf("Nodename: %v, OS Image: %v", node.Name, node.Status.NodeInfo.OSImage)
|
|
}
|
|
}
|
|
|
|
func areGPUsAvailableOnAllSchedulableNodes(f *framework.Framework) bool {
|
|
e2elog.Logf("Getting list of Nodes from API server")
|
|
nodeList, err := f.ClientSet.CoreV1().Nodes().List(metav1.ListOptions{})
|
|
framework.ExpectNoError(err, "getting node list")
|
|
for _, node := range nodeList.Items {
|
|
if node.Spec.Unschedulable {
|
|
continue
|
|
}
|
|
e2elog.Logf("gpuResourceName %s", gpuResourceName)
|
|
if val, ok := node.Status.Capacity[gpuResourceName]; !ok || val.Value() == 0 {
|
|
e2elog.Logf("Nvidia GPUs not available on Node: %q", node.Name)
|
|
return false
|
|
}
|
|
}
|
|
e2elog.Logf("Nvidia GPUs exist on all schedulable nodes")
|
|
return true
|
|
}
|
|
|
|
func getGPUsAvailable(f *framework.Framework) int64 {
|
|
nodeList, err := f.ClientSet.CoreV1().Nodes().List(metav1.ListOptions{})
|
|
framework.ExpectNoError(err, "getting node list")
|
|
var gpusAvailable int64
|
|
for _, node := range nodeList.Items {
|
|
if val, ok := node.Status.Allocatable[gpuResourceName]; ok {
|
|
gpusAvailable += (&val).Value()
|
|
}
|
|
}
|
|
return gpusAvailable
|
|
}
|
|
|
|
// SetupNVIDIAGPUNode install Nvidia Drivers and wait for Nvidia GPUs to be available on nodes
|
|
func SetupNVIDIAGPUNode(f *framework.Framework, setupResourceGatherer bool) *framework.ContainerResourceGatherer {
|
|
logOSImages(f)
|
|
|
|
dsYamlURLFromEnv := os.Getenv("NVIDIA_DRIVER_INSTALLER_DAEMONSET")
|
|
if dsYamlURLFromEnv != "" {
|
|
dsYamlURL = dsYamlURLFromEnv
|
|
} else {
|
|
dsYamlURL = "https://raw.githubusercontent.com/GoogleCloudPlatform/container-engine-accelerators/master/daemonset.yaml"
|
|
}
|
|
gpuResourceName = gpu.NVIDIAGPUResourceName
|
|
|
|
e2elog.Logf("Using %v", dsYamlURL)
|
|
// Creates the DaemonSet that installs Nvidia Drivers.
|
|
ds, err := framework.DsFromManifest(dsYamlURL)
|
|
framework.ExpectNoError(err)
|
|
ds.Namespace = f.Namespace.Name
|
|
_, err = f.ClientSet.AppsV1().DaemonSets(f.Namespace.Name).Create(ds)
|
|
framework.ExpectNoError(err, "failed to create nvidia-driver-installer daemonset")
|
|
e2elog.Logf("Successfully created daemonset to install Nvidia drivers.")
|
|
|
|
pods, err := framework.WaitForControlledPods(f.ClientSet, ds.Namespace, ds.Name, extensionsinternal.Kind("DaemonSet"))
|
|
framework.ExpectNoError(err, "failed to get pods controlled by the nvidia-driver-installer daemonset")
|
|
|
|
devicepluginPods, err := framework.WaitForControlledPods(f.ClientSet, "kube-system", "nvidia-gpu-device-plugin", extensionsinternal.Kind("DaemonSet"))
|
|
if err == nil {
|
|
e2elog.Logf("Adding deviceplugin addon pod.")
|
|
pods.Items = append(pods.Items, devicepluginPods.Items...)
|
|
}
|
|
|
|
var rsgather *framework.ContainerResourceGatherer
|
|
if setupResourceGatherer {
|
|
e2elog.Logf("Starting ResourceUsageGather for the created DaemonSet pods.")
|
|
rsgather, err = framework.NewResourceUsageGatherer(f.ClientSet, framework.ResourceGathererOptions{InKubemark: false, Nodes: framework.AllNodes, ResourceDataGatheringPeriod: 2 * time.Second, ProbeDuration: 2 * time.Second, PrintVerboseLogs: true}, pods)
|
|
framework.ExpectNoError(err, "creating ResourceUsageGather for the daemonset pods")
|
|
go rsgather.StartGatheringData()
|
|
}
|
|
|
|
// Wait for Nvidia GPUs to be available on nodes
|
|
e2elog.Logf("Waiting for drivers to be installed and GPUs to be available in Node Capacity...")
|
|
gomega.Eventually(func() bool {
|
|
return areGPUsAvailableOnAllSchedulableNodes(f)
|
|
}, driverInstallTimeout, time.Second).Should(gomega.BeTrue())
|
|
|
|
return rsgather
|
|
}
|
|
|
|
func testNvidiaGPUs(f *framework.Framework) {
|
|
rsgather := SetupNVIDIAGPUNode(f, true)
|
|
e2elog.Logf("Creating as many pods as there are Nvidia GPUs and have the pods run a CUDA app")
|
|
podList := []*v1.Pod{}
|
|
for i := int64(0); i < getGPUsAvailable(f); i++ {
|
|
podList = append(podList, f.PodClient().Create(makeCudaAdditionDevicePluginTestPod()))
|
|
}
|
|
e2elog.Logf("Wait for all test pods to succeed")
|
|
// Wait for all pods to succeed
|
|
for _, pod := range podList {
|
|
f.PodClient().WaitForSuccess(pod.Name, 5*time.Minute)
|
|
}
|
|
|
|
e2elog.Logf("Stopping ResourceUsageGather")
|
|
constraints := make(map[string]framework.ResourceConstraint)
|
|
// For now, just gets summary. Can pass valid constraints in the future.
|
|
summary, err := rsgather.StopAndSummarize([]int{50, 90, 100}, constraints)
|
|
f.TestSummaries = append(f.TestSummaries, summary)
|
|
framework.ExpectNoError(err, "getting resource usage summary")
|
|
}
|
|
|
|
var _ = SIGDescribe("[Feature:GPUDevicePlugin]", func() {
|
|
f := framework.NewDefaultFramework("device-plugin-gpus")
|
|
ginkgo.It("run Nvidia GPU Device Plugin tests", func() {
|
|
testNvidiaGPUs(f)
|
|
})
|
|
})
|
|
|
|
func testNvidiaGPUsJob(f *framework.Framework) {
|
|
_ = SetupNVIDIAGPUNode(f, false)
|
|
// Job set to have 5 completions with parallelism of 1 to ensure that it lasts long enough to experience the node recreation
|
|
completions := int32(5)
|
|
ginkgo.By("Starting GPU job")
|
|
StartJob(f, completions)
|
|
|
|
job, err := jobutil.GetJob(f.ClientSet, f.Namespace.Name, "cuda-add")
|
|
framework.ExpectNoError(err)
|
|
|
|
// make sure job is running by waiting for its first pod to start running
|
|
err = jobutil.WaitForAllJobPodsRunning(f.ClientSet, f.Namespace.Name, job.Name, 1)
|
|
framework.ExpectNoError(err)
|
|
|
|
numNodes, err := framework.NumberOfRegisteredNodes(f.ClientSet)
|
|
framework.ExpectNoError(err)
|
|
nodes, err := framework.CheckNodesReady(f.ClientSet, numNodes, framework.NodeReadyInitialTimeout)
|
|
framework.ExpectNoError(err)
|
|
|
|
ginkgo.By("Recreating nodes")
|
|
err = gce.RecreateNodes(f.ClientSet, nodes)
|
|
framework.ExpectNoError(err)
|
|
ginkgo.By("Done recreating nodes")
|
|
|
|
ginkgo.By("Waiting for gpu job to finish")
|
|
err = jobutil.WaitForJobFinish(f.ClientSet, f.Namespace.Name, job.Name)
|
|
framework.ExpectNoError(err)
|
|
ginkgo.By("Done with gpu job")
|
|
|
|
gomega.Expect(job.Status.Failed).To(gomega.BeZero(), "Job pods failed during node recreation: %v", job.Status.Failed)
|
|
|
|
VerifyJobNCompletions(f, completions)
|
|
}
|
|
|
|
// StartJob starts a simple CUDA job that requests gpu and the specified number of completions
|
|
func StartJob(f *framework.Framework, completions int32) {
|
|
var activeSeconds int64 = 3600
|
|
testJob := jobutil.NewTestJob("succeed", "cuda-add", v1.RestartPolicyAlways, 1, completions, &activeSeconds, 6)
|
|
testJob.Spec.Template.Spec = v1.PodSpec{
|
|
RestartPolicy: v1.RestartPolicyOnFailure,
|
|
Containers: []v1.Container{
|
|
{
|
|
Name: "vector-addition",
|
|
Image: imageutils.GetE2EImage(imageutils.CudaVectorAdd),
|
|
Command: []string{"/bin/sh", "-c", "./vectorAdd && sleep 60"},
|
|
Resources: v1.ResourceRequirements{
|
|
Limits: v1.ResourceList{
|
|
gpuResourceName: *resource.NewQuantity(1, resource.DecimalSI),
|
|
},
|
|
},
|
|
},
|
|
},
|
|
}
|
|
ns := f.Namespace.Name
|
|
_, err := jobutil.CreateJob(f.ClientSet, ns, testJob)
|
|
framework.ExpectNoError(err)
|
|
e2elog.Logf("Created job %v", testJob)
|
|
}
|
|
|
|
// VerifyJobNCompletions verifies that the job has completions number of successful pods
|
|
func VerifyJobNCompletions(f *framework.Framework, completions int32) {
|
|
ns := f.Namespace.Name
|
|
pods, err := jobutil.GetJobPods(f.ClientSet, f.Namespace.Name, "cuda-add")
|
|
framework.ExpectNoError(err)
|
|
createdPods := pods.Items
|
|
createdPodNames := podNames(createdPods)
|
|
e2elog.Logf("Got the following pods for job cuda-add: %v", createdPodNames)
|
|
|
|
successes := int32(0)
|
|
for _, podName := range createdPodNames {
|
|
f.PodClient().WaitForFinish(podName, 5*time.Minute)
|
|
logs, err := framework.GetPodLogs(f.ClientSet, ns, podName, "vector-addition")
|
|
framework.ExpectNoError(err, "Should be able to get logs for pod %v", podName)
|
|
regex := regexp.MustCompile("PASSED")
|
|
if regex.MatchString(logs) {
|
|
successes++
|
|
}
|
|
}
|
|
if successes != completions {
|
|
framework.Failf("Only got %v completions. Expected %v completions.", successes, completions)
|
|
}
|
|
}
|
|
|
|
func podNames(pods []v1.Pod) []string {
|
|
originalPodNames := make([]string, len(pods))
|
|
for i, p := range pods {
|
|
originalPodNames[i] = p.ObjectMeta.Name
|
|
}
|
|
return originalPodNames
|
|
}
|
|
|
|
var _ = SIGDescribe("GPUDevicePluginAcrossRecreate [Feature:Recreate]", func() {
|
|
ginkgo.BeforeEach(func() {
|
|
framework.SkipUnlessProviderIs("gce", "gke")
|
|
})
|
|
f := framework.NewDefaultFramework("device-plugin-gpus-recreate")
|
|
ginkgo.It("run Nvidia GPU Device Plugin tests with a recreation", func() {
|
|
testNvidiaGPUsJob(f)
|
|
})
|
|
})
|