|
|
// Copyright ©2017 The Gonum Authors. All rights reserved.
|
|
|
// Use of this source code is governed by a BSD-style
|
|
|
// license that can be found in the LICENSE file.
|
|
|
|
|
|
package mat
|
|
|
|
|
|
import (
|
|
|
"errors"
|
|
|
|
|
|
"gonum.org/v1/gonum/blas/blas64"
|
|
|
)
|
|
|
|
|
|
// HOGSVD is a type for creating and using the Higher Order Generalized Singular Value
|
|
|
// Decomposition (HOGSVD) of a set of matrices.
|
|
|
//
|
|
|
// The factorization is a linear transformation of the data sets from the given
|
|
|
// variable×sample spaces to reduced and diagonalized "eigenvariable"×"eigensample"
|
|
|
// spaces.
|
|
|
type HOGSVD struct {
|
|
|
n int
|
|
|
v *Dense
|
|
|
b []Dense
|
|
|
|
|
|
err error
|
|
|
}
|
|
|
|
|
|
// succFact returns whether the receiver contains a successful factorization.
|
|
|
func (gsvd *HOGSVD) succFact() bool {
|
|
|
return gsvd.n != 0
|
|
|
}
|
|
|
|
|
|
// Factorize computes the higher order generalized singular value decomposition (HOGSVD)
|
|
|
// of the n input r_i×c column tall matrices in m. HOGSV extends the GSVD case from 2 to n
|
|
|
// input matrices.
|
|
|
//
|
|
|
// M_0 = U_0 * Σ_0 * Vᵀ
|
|
|
// M_1 = U_1 * Σ_1 * Vᵀ
|
|
|
// .
|
|
|
// .
|
|
|
// .
|
|
|
// M_{n-1} = U_{n-1} * Σ_{n-1} * Vᵀ
|
|
|
//
|
|
|
// where U_i are r_i×c matrices of singular vectors, Σ are c×c matrices singular values, and V
|
|
|
// is a c×c matrix of singular vectors.
|
|
|
//
|
|
|
// Factorize returns whether the decomposition succeeded. If the decomposition
|
|
|
// failed, routines that require a successful factorization will panic.
|
|
|
func (gsvd *HOGSVD) Factorize(m ...Matrix) (ok bool) {
|
|
|
// Factorize performs the HOGSVD factorisation
|
|
|
// essentially as described by Ponnapalli et al.
|
|
|
// https://doi.org/10.1371/journal.pone.0028072
|
|
|
|
|
|
if len(m) < 2 {
|
|
|
panic("hogsvd: too few matrices")
|
|
|
}
|
|
|
gsvd.n = 0
|
|
|
|
|
|
r, c := m[0].Dims()
|
|
|
a := make([]Cholesky, len(m))
|
|
|
var ts SymDense
|
|
|
for i, d := range m {
|
|
|
rd, cd := d.Dims()
|
|
|
if rd < cd {
|
|
|
gsvd.err = ErrShape
|
|
|
return false
|
|
|
}
|
|
|
if rd > r {
|
|
|
r = rd
|
|
|
}
|
|
|
if cd != c {
|
|
|
panic(ErrShape)
|
|
|
}
|
|
|
ts.Reset()
|
|
|
ts.SymOuterK(1, d.T())
|
|
|
ok = a[i].Factorize(&ts)
|
|
|
if !ok {
|
|
|
gsvd.err = errors.New("hogsvd: cholesky decomposition failed")
|
|
|
return false
|
|
|
}
|
|
|
}
|
|
|
|
|
|
s := getWorkspace(c, c, true)
|
|
|
defer putWorkspace(s)
|
|
|
sij := getWorkspace(c, c, false)
|
|
|
defer putWorkspace(sij)
|
|
|
for i, ai := range a {
|
|
|
for _, aj := range a[i+1:] {
|
|
|
gsvd.err = ai.SolveCholTo(sij, &aj)
|
|
|
if gsvd.err != nil {
|
|
|
return false
|
|
|
}
|
|
|
s.Add(s, sij)
|
|
|
|
|
|
gsvd.err = aj.SolveCholTo(sij, &ai)
|
|
|
if gsvd.err != nil {
|
|
|
return false
|
|
|
}
|
|
|
s.Add(s, sij)
|
|
|
}
|
|
|
}
|
|
|
s.Scale(1/float64(len(m)*(len(m)-1)), s)
|
|
|
|
|
|
var eig Eigen
|
|
|
ok = eig.Factorize(s.T(), EigenRight)
|
|
|
if !ok {
|
|
|
gsvd.err = errors.New("hogsvd: eigen decomposition failed")
|
|
|
return false
|
|
|
}
|
|
|
var vc CDense
|
|
|
eig.VectorsTo(&vc)
|
|
|
// vc is guaranteed to have real eigenvalues.
|
|
|
rc, cc := vc.Dims()
|
|
|
v := NewDense(rc, cc, nil)
|
|
|
for i := 0; i < rc; i++ {
|
|
|
for j := 0; j < cc; j++ {
|
|
|
a := vc.At(i, j)
|
|
|
v.set(i, j, real(a))
|
|
|
}
|
|
|
}
|
|
|
// Rescale the columns of v by their Frobenius norms.
|
|
|
// Work done in cv is reflected in v.
|
|
|
var cv VecDense
|
|
|
for j := 0; j < c; j++ {
|
|
|
cv.ColViewOf(v, j)
|
|
|
cv.ScaleVec(1/blas64.Nrm2(cv.mat), &cv)
|
|
|
}
|
|
|
|
|
|
b := make([]Dense, len(m))
|
|
|
biT := getWorkspace(c, r, false)
|
|
|
defer putWorkspace(biT)
|
|
|
for i, d := range m {
|
|
|
// All calls to reset will leave an emptied
|
|
|
// matrix with capacity to store the result
|
|
|
// without additional allocation.
|
|
|
biT.Reset()
|
|
|
gsvd.err = biT.Solve(v, d.T())
|
|
|
if gsvd.err != nil {
|
|
|
return false
|
|
|
}
|
|
|
b[i].CloneFrom(biT.T())
|
|
|
}
|
|
|
|
|
|
gsvd.n = len(m)
|
|
|
gsvd.v = v
|
|
|
gsvd.b = b
|
|
|
return true
|
|
|
}
|
|
|
|
|
|
// Err returns the reason for a factorization failure.
|
|
|
func (gsvd *HOGSVD) Err() error {
|
|
|
return gsvd.err
|
|
|
}
|
|
|
|
|
|
// Len returns the number of matrices that have been factorized. If Len returns
|
|
|
// zero, the factorization was not successful.
|
|
|
func (gsvd *HOGSVD) Len() int {
|
|
|
return gsvd.n
|
|
|
}
|
|
|
|
|
|
// UTo extracts the matrix U_n from the singular value decomposition, storing
|
|
|
// the result in-place into dst. U_n is size r×c.
|
|
|
//
|
|
|
// If dst is empty, UTo will resize dst to be r×c. When dst is
|
|
|
// non-empty, UTo will panic if dst is not r×c. UTo will also
|
|
|
// panic if the receiver does not contain a successful factorization.
|
|
|
func (gsvd *HOGSVD) UTo(dst *Dense, n int) {
|
|
|
if !gsvd.succFact() {
|
|
|
panic(badFact)
|
|
|
}
|
|
|
if n < 0 || gsvd.n <= n {
|
|
|
panic("hogsvd: invalid index")
|
|
|
}
|
|
|
r, c := gsvd.b[n].Dims()
|
|
|
if dst.IsEmpty() {
|
|
|
dst.ReuseAs(r, c)
|
|
|
} else {
|
|
|
r2, c2 := dst.Dims()
|
|
|
if r != r2 || c != c2 {
|
|
|
panic(ErrShape)
|
|
|
}
|
|
|
}
|
|
|
dst.Copy(&gsvd.b[n])
|
|
|
var v VecDense
|
|
|
for j, f := range gsvd.Values(nil, n) {
|
|
|
v.ColViewOf(dst, j)
|
|
|
v.ScaleVec(1/f, &v)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
// Values returns the nth set of singular values of the factorized system.
|
|
|
// If the input slice is non-nil, the values will be stored in-place into the slice.
|
|
|
// In this case, the slice must have length c, and Values will panic with
|
|
|
// matrix.ErrSliceLengthMismatch otherwise. If the input slice is nil,
|
|
|
// a new slice of the appropriate length will be allocated and returned.
|
|
|
//
|
|
|
// Values will panic if the receiver does not contain a successful factorization.
|
|
|
func (gsvd *HOGSVD) Values(s []float64, n int) []float64 {
|
|
|
if !gsvd.succFact() {
|
|
|
panic(badFact)
|
|
|
}
|
|
|
if n < 0 || gsvd.n <= n {
|
|
|
panic("hogsvd: invalid index")
|
|
|
}
|
|
|
|
|
|
_, c := gsvd.b[n].Dims()
|
|
|
if s == nil {
|
|
|
s = make([]float64, c)
|
|
|
} else if len(s) != c {
|
|
|
panic(ErrSliceLengthMismatch)
|
|
|
}
|
|
|
var v VecDense
|
|
|
for j := 0; j < c; j++ {
|
|
|
v.ColViewOf(&gsvd.b[n], j)
|
|
|
s[j] = blas64.Nrm2(v.mat)
|
|
|
}
|
|
|
return s
|
|
|
}
|
|
|
|
|
|
// VTo extracts the matrix V from the singular value decomposition, storing
|
|
|
// the result in-place into dst. V is size c×c.
|
|
|
//
|
|
|
// If dst is empty, VTo will resize dst to be c×c. When dst is
|
|
|
// non-empty, VTo will panic if dst is not c×c. VTo will also
|
|
|
// panic if the receiver does not contain a successful factorization.
|
|
|
func (gsvd *HOGSVD) VTo(dst *Dense) {
|
|
|
if !gsvd.succFact() {
|
|
|
panic(badFact)
|
|
|
}
|
|
|
r, c := gsvd.v.Dims()
|
|
|
if dst.IsEmpty() {
|
|
|
dst.ReuseAs(r, c)
|
|
|
} else {
|
|
|
r2, c2 := dst.Dims()
|
|
|
if r != r2 || c != c2 {
|
|
|
panic(ErrShape)
|
|
|
}
|
|
|
}
|
|
|
dst.Copy(gsvd.v)
|
|
|
}
|