You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
k3s/vendor/gonum.org/v1/gonum/mat/matrix.go

1004 lines
26 KiB

// Copyright ©2013 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"math"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/floats"
"gonum.org/v1/gonum/lapack"
"gonum.org/v1/gonum/lapack/lapack64"
)
// Matrix is the basic matrix interface type.
type Matrix interface {
// Dims returns the dimensions of a Matrix.
Dims() (r, c int)
// At returns the value of a matrix element at row i, column j.
// It will panic if i or j are out of bounds for the matrix.
At(i, j int) float64
// T returns the transpose of the Matrix. Whether T returns a copy of the
// underlying data is implementation dependent.
// This method may be implemented using the Transpose type, which
// provides an implicit matrix transpose.
T() Matrix
}
// allMatrix represents the extra set of methods that all mat Matrix types
// should satisfy. This is used to enforce compile-time consistency between the
// Dense types, especially helpful when adding new features.
type allMatrix interface {
Reseter
IsEmpty() bool
Zero()
}
// denseMatrix represents the extra set of methods that all Dense Matrix types
// should satisfy. This is used to enforce compile-time consistency between the
// Dense types, especially helpful when adding new features.
type denseMatrix interface {
DiagView() Diagonal
Tracer
}
var (
_ Matrix = Transpose{}
_ Untransposer = Transpose{}
)
// Transpose is a type for performing an implicit matrix transpose. It implements
// the Matrix interface, returning values from the transpose of the matrix within.
type Transpose struct {
Matrix Matrix
}
// At returns the value of the element at row i and column j of the transposed
// matrix, that is, row j and column i of the Matrix field.
func (t Transpose) At(i, j int) float64 {
return t.Matrix.At(j, i)
}
// Dims returns the dimensions of the transposed matrix. The number of rows returned
// is the number of columns in the Matrix field, and the number of columns is
// the number of rows in the Matrix field.
func (t Transpose) Dims() (r, c int) {
c, r = t.Matrix.Dims()
return r, c
}
// T performs an implicit transpose by returning the Matrix field.
func (t Transpose) T() Matrix {
return t.Matrix
}
// Untranspose returns the Matrix field.
func (t Transpose) Untranspose() Matrix {
return t.Matrix
}
// Untransposer is a type that can undo an implicit transpose.
type Untransposer interface {
// Note: This interface is needed to unify all of the Transpose types. In
// the mat methods, we need to test if the Matrix has been implicitly
// transposed. If this is checked by testing for the specific Transpose type
// then the behavior will be different if the user uses T() or TTri() for a
// triangular matrix.
// Untranspose returns the underlying Matrix stored for the implicit transpose.
Untranspose() Matrix
}
// UntransposeBander is a type that can undo an implicit band transpose.
type UntransposeBander interface {
// Untranspose returns the underlying Banded stored for the implicit transpose.
UntransposeBand() Banded
}
// UntransposeTrier is a type that can undo an implicit triangular transpose.
type UntransposeTrier interface {
// Untranspose returns the underlying Triangular stored for the implicit transpose.
UntransposeTri() Triangular
}
// UntransposeTriBander is a type that can undo an implicit triangular banded
// transpose.
type UntransposeTriBander interface {
// Untranspose returns the underlying Triangular stored for the implicit transpose.
UntransposeTriBand() TriBanded
}
// Mutable is a matrix interface type that allows elements to be altered.
type Mutable interface {
// Set alters the matrix element at row i, column j to v.
// It will panic if i or j are out of bounds for the matrix.
Set(i, j int, v float64)
Matrix
}
// A RowViewer can return a Vector reflecting a row that is backed by the matrix
// data. The Vector returned will have length equal to the number of columns.
type RowViewer interface {
RowView(i int) Vector
}
// A RawRowViewer can return a slice of float64 reflecting a row that is backed by the matrix
// data.
type RawRowViewer interface {
RawRowView(i int) []float64
}
// A ColViewer can return a Vector reflecting a column that is backed by the matrix
// data. The Vector returned will have length equal to the number of rows.
type ColViewer interface {
ColView(j int) Vector
}
// A RawColViewer can return a slice of float64 reflecting a column that is backed by the matrix
// data.
type RawColViewer interface {
RawColView(j int) []float64
}
// A ClonerFrom can make a copy of a into the receiver, overwriting the previous value of the
// receiver. The clone operation does not make any restriction on shape and will not cause
// shadowing.
type ClonerFrom interface {
CloneFrom(a Matrix)
}
// A Reseter can reset the matrix so that it can be reused as the receiver of a dimensionally
// restricted operation. This is commonly used when the matrix is being used as a workspace
// or temporary matrix.
//
// If the matrix is a view, using Reset may result in data corruption in elements outside
// the view. Similarly, if the matrix shares backing data with another variable, using
// Reset may lead to unexpected changes in data values.
type Reseter interface {
Reset()
}
// A Copier can make a copy of elements of a into the receiver. The submatrix copied
// starts at row and column 0 and has dimensions equal to the minimum dimensions of
// the two matrices. The number of row and columns copied is returned.
// Copy will copy from a source that aliases the receiver unless the source is transposed;
// an aliasing transpose copy will panic with the exception for a special case when
// the source data has a unitary increment or stride.
type Copier interface {
Copy(a Matrix) (r, c int)
}
// A Grower can grow the size of the represented matrix by the given number of rows and columns.
// Growing beyond the size given by the Caps method will result in the allocation of a new
// matrix and copying of the elements. If Grow is called with negative increments it will
// panic with ErrIndexOutOfRange.
type Grower interface {
Caps() (r, c int)
Grow(r, c int) Matrix
}
// A BandWidther represents a banded matrix and can return the left and right half-bandwidths, k1 and
// k2.
type BandWidther interface {
BandWidth() (k1, k2 int)
}
// A RawMatrixSetter can set the underlying blas64.General used by the receiver. There is no restriction
// on the shape of the receiver. Changes to the receiver's elements will be reflected in the blas64.General.Data.
type RawMatrixSetter interface {
SetRawMatrix(a blas64.General)
}
// A RawMatrixer can return a blas64.General representation of the receiver. Changes to the blas64.General.Data
// slice will be reflected in the original matrix, changes to the Rows, Cols and Stride fields will not.
type RawMatrixer interface {
RawMatrix() blas64.General
}
// A RawVectorer can return a blas64.Vector representation of the receiver. Changes to the blas64.Vector.Data
// slice will be reflected in the original matrix, changes to the Inc field will not.
type RawVectorer interface {
RawVector() blas64.Vector
}
// A NonZeroDoer can call a function for each non-zero element of the receiver.
// The parameters of the function are the element indices and its value.
type NonZeroDoer interface {
DoNonZero(func(i, j int, v float64))
}
// A RowNonZeroDoer can call a function for each non-zero element of a row of the receiver.
// The parameters of the function are the element indices and its value.
type RowNonZeroDoer interface {
DoRowNonZero(i int, fn func(i, j int, v float64))
}
// A ColNonZeroDoer can call a function for each non-zero element of a column of the receiver.
// The parameters of the function are the element indices and its value.
type ColNonZeroDoer interface {
DoColNonZero(j int, fn func(i, j int, v float64))
}
// untranspose untransposes a matrix if applicable. If a is an Untransposer, then
// untranspose returns the underlying matrix and true. If it is not, then it returns
// the input matrix and false.
func untranspose(a Matrix) (Matrix, bool) {
if ut, ok := a.(Untransposer); ok {
return ut.Untranspose(), true
}
return a, false
}
// untransposeExtract returns an untransposed matrix in a built-in matrix type.
//
// The untransposed matrix is returned unaltered if it is a built-in matrix type.
// Otherwise, if it implements a Raw method, an appropriate built-in type value
// is returned holding the raw matrix value of the input. If neither of these
// is possible, the untransposed matrix is returned.
func untransposeExtract(a Matrix) (Matrix, bool) {
ut, trans := untranspose(a)
switch m := ut.(type) {
case *DiagDense, *SymBandDense, *TriBandDense, *BandDense, *TriDense, *SymDense, *Dense:
return m, trans
// TODO(btracey): Add here if we ever have an equivalent of RawDiagDense.
case RawSymBander:
rsb := m.RawSymBand()
if rsb.Uplo != blas.Upper {
return ut, trans
}
var sb SymBandDense
sb.SetRawSymBand(rsb)
return &sb, trans
case RawTriBander:
rtb := m.RawTriBand()
if rtb.Diag == blas.Unit {
return ut, trans
}
var tb TriBandDense
tb.SetRawTriBand(rtb)
return &tb, trans
case RawBander:
var b BandDense
b.SetRawBand(m.RawBand())
return &b, trans
case RawTriangular:
rt := m.RawTriangular()
if rt.Diag == blas.Unit {
return ut, trans
}
var t TriDense
t.SetRawTriangular(rt)
return &t, trans
case RawSymmetricer:
rs := m.RawSymmetric()
if rs.Uplo != blas.Upper {
return ut, trans
}
var s SymDense
s.SetRawSymmetric(rs)
return &s, trans
case RawMatrixer:
var d Dense
d.SetRawMatrix(m.RawMatrix())
return &d, trans
default:
return ut, trans
}
}
// TODO(btracey): Consider adding CopyCol/CopyRow if the behavior seems useful.
// TODO(btracey): Add in fast paths to Row/Col for the other concrete types
// (TriDense, etc.) as well as relevant interfaces (RowColer, RawRowViewer, etc.)
// Col copies the elements in the jth column of the matrix into the slice dst.
// The length of the provided slice must equal the number of rows, unless the
// slice is nil in which case a new slice is first allocated.
func Col(dst []float64, j int, a Matrix) []float64 {
r, c := a.Dims()
if j < 0 || j >= c {
panic(ErrColAccess)
}
if dst == nil {
dst = make([]float64, r)
} else {
if len(dst) != r {
panic(ErrColLength)
}
}
aU, aTrans := untranspose(a)
if rm, ok := aU.(RawMatrixer); ok {
m := rm.RawMatrix()
if aTrans {
copy(dst, m.Data[j*m.Stride:j*m.Stride+m.Cols])
return dst
}
blas64.Copy(blas64.Vector{N: r, Inc: m.Stride, Data: m.Data[j:]},
blas64.Vector{N: r, Inc: 1, Data: dst},
)
return dst
}
for i := 0; i < r; i++ {
dst[i] = a.At(i, j)
}
return dst
}
// Row copies the elements in the ith row of the matrix into the slice dst.
// The length of the provided slice must equal the number of columns, unless the
// slice is nil in which case a new slice is first allocated.
func Row(dst []float64, i int, a Matrix) []float64 {
r, c := a.Dims()
if i < 0 || i >= r {
panic(ErrColAccess)
}
if dst == nil {
dst = make([]float64, c)
} else {
if len(dst) != c {
panic(ErrRowLength)
}
}
aU, aTrans := untranspose(a)
if rm, ok := aU.(RawMatrixer); ok {
m := rm.RawMatrix()
if aTrans {
blas64.Copy(blas64.Vector{N: c, Inc: m.Stride, Data: m.Data[i:]},
blas64.Vector{N: c, Inc: 1, Data: dst},
)
return dst
}
copy(dst, m.Data[i*m.Stride:i*m.Stride+m.Cols])
return dst
}
for j := 0; j < c; j++ {
dst[j] = a.At(i, j)
}
return dst
}
// Cond returns the condition number of the given matrix under the given norm.
// The condition number must be based on the 1-norm, 2-norm or ∞-norm.
// Cond will panic with matrix.ErrShape if the matrix has zero size.
//
// BUG(btracey): The computation of the 1-norm and ∞-norm for non-square matrices
// is innacurate, although is typically the right order of magnitude. See
// https://github.com/xianyi/OpenBLAS/issues/636. While the value returned will
// change with the resolution of this bug, the result from Cond will match the
// condition number used internally.
func Cond(a Matrix, norm float64) float64 {
m, n := a.Dims()
if m == 0 || n == 0 {
panic(ErrShape)
}
var lnorm lapack.MatrixNorm
switch norm {
default:
panic("mat: bad norm value")
case 1:
lnorm = lapack.MaxColumnSum
case 2:
var svd SVD
ok := svd.Factorize(a, SVDNone)
if !ok {
return math.Inf(1)
}
return svd.Cond()
case math.Inf(1):
lnorm = lapack.MaxRowSum
}
if m == n {
// Use the LU decomposition to compute the condition number.
var lu LU
lu.factorize(a, lnorm)
return lu.Cond()
}
if m > n {
// Use the QR factorization to compute the condition number.
var qr QR
qr.factorize(a, lnorm)
return qr.Cond()
}
// Use the LQ factorization to compute the condition number.
var lq LQ
lq.factorize(a, lnorm)
return lq.Cond()
}
// Det returns the determinant of the matrix a. In many expressions using LogDet
// will be more numerically stable.
func Det(a Matrix) float64 {
det, sign := LogDet(a)
return math.Exp(det) * sign
}
// Dot returns the sum of the element-wise product of a and b.
// Dot panics if the matrix sizes are unequal.
func Dot(a, b Vector) float64 {
la := a.Len()
lb := b.Len()
if la != lb {
panic(ErrShape)
}
if arv, ok := a.(RawVectorer); ok {
if brv, ok := b.(RawVectorer); ok {
return blas64.Dot(arv.RawVector(), brv.RawVector())
}
}
var sum float64
for i := 0; i < la; i++ {
sum += a.At(i, 0) * b.At(i, 0)
}
return sum
}
// Equal returns whether the matrices a and b have the same size
// and are element-wise equal.
func Equal(a, b Matrix) bool {
ar, ac := a.Dims()
br, bc := b.Dims()
if ar != br || ac != bc {
return false
}
aU, aTrans := untranspose(a)
bU, bTrans := untranspose(b)
if rma, ok := aU.(RawMatrixer); ok {
if rmb, ok := bU.(RawMatrixer); ok {
ra := rma.RawMatrix()
rb := rmb.RawMatrix()
if aTrans == bTrans {
for i := 0; i < ra.Rows; i++ {
for j := 0; j < ra.Cols; j++ {
if ra.Data[i*ra.Stride+j] != rb.Data[i*rb.Stride+j] {
return false
}
}
}
return true
}
for i := 0; i < ra.Rows; i++ {
for j := 0; j < ra.Cols; j++ {
if ra.Data[i*ra.Stride+j] != rb.Data[j*rb.Stride+i] {
return false
}
}
}
return true
}
}
if rma, ok := aU.(RawSymmetricer); ok {
if rmb, ok := bU.(RawSymmetricer); ok {
ra := rma.RawSymmetric()
rb := rmb.RawSymmetric()
// Symmetric matrices are always upper and equal to their transpose.
for i := 0; i < ra.N; i++ {
for j := i; j < ra.N; j++ {
if ra.Data[i*ra.Stride+j] != rb.Data[i*rb.Stride+j] {
return false
}
}
}
return true
}
}
if ra, ok := aU.(*VecDense); ok {
if rb, ok := bU.(*VecDense); ok {
// If the raw vectors are the same length they must either both be
// transposed or both not transposed (or have length 1).
for i := 0; i < ra.mat.N; i++ {
if ra.mat.Data[i*ra.mat.Inc] != rb.mat.Data[i*rb.mat.Inc] {
return false
}
}
return true
}
}
for i := 0; i < ar; i++ {
for j := 0; j < ac; j++ {
if a.At(i, j) != b.At(i, j) {
return false
}
}
}
return true
}
// EqualApprox returns whether the matrices a and b have the same size and contain all equal
// elements with tolerance for element-wise equality specified by epsilon. Matrices
// with non-equal shapes are not equal.
func EqualApprox(a, b Matrix, epsilon float64) bool {
ar, ac := a.Dims()
br, bc := b.Dims()
if ar != br || ac != bc {
return false
}
aU, aTrans := untranspose(a)
bU, bTrans := untranspose(b)
if rma, ok := aU.(RawMatrixer); ok {
if rmb, ok := bU.(RawMatrixer); ok {
ra := rma.RawMatrix()
rb := rmb.RawMatrix()
if aTrans == bTrans {
for i := 0; i < ra.Rows; i++ {
for j := 0; j < ra.Cols; j++ {
if !floats.EqualWithinAbsOrRel(ra.Data[i*ra.Stride+j], rb.Data[i*rb.Stride+j], epsilon, epsilon) {
return false
}
}
}
return true
}
for i := 0; i < ra.Rows; i++ {
for j := 0; j < ra.Cols; j++ {
if !floats.EqualWithinAbsOrRel(ra.Data[i*ra.Stride+j], rb.Data[j*rb.Stride+i], epsilon, epsilon) {
return false
}
}
}
return true
}
}
if rma, ok := aU.(RawSymmetricer); ok {
if rmb, ok := bU.(RawSymmetricer); ok {
ra := rma.RawSymmetric()
rb := rmb.RawSymmetric()
// Symmetric matrices are always upper and equal to their transpose.
for i := 0; i < ra.N; i++ {
for j := i; j < ra.N; j++ {
if !floats.EqualWithinAbsOrRel(ra.Data[i*ra.Stride+j], rb.Data[i*rb.Stride+j], epsilon, epsilon) {
return false
}
}
}
return true
}
}
if ra, ok := aU.(*VecDense); ok {
if rb, ok := bU.(*VecDense); ok {
// If the raw vectors are the same length they must either both be
// transposed or both not transposed (or have length 1).
for i := 0; i < ra.mat.N; i++ {
if !floats.EqualWithinAbsOrRel(ra.mat.Data[i*ra.mat.Inc], rb.mat.Data[i*rb.mat.Inc], epsilon, epsilon) {
return false
}
}
return true
}
}
for i := 0; i < ar; i++ {
for j := 0; j < ac; j++ {
if !floats.EqualWithinAbsOrRel(a.At(i, j), b.At(i, j), epsilon, epsilon) {
return false
}
}
}
return true
}
// LogDet returns the log of the determinant and the sign of the determinant
// for the matrix that has been factorized. Numerical stability in product and
// division expressions is generally improved by working in log space.
func LogDet(a Matrix) (det float64, sign float64) {
// TODO(btracey): Add specialized routines for TriDense, etc.
var lu LU
lu.Factorize(a)
return lu.LogDet()
}
// Max returns the largest element value of the matrix A.
// Max will panic with matrix.ErrShape if the matrix has zero size.
func Max(a Matrix) float64 {
r, c := a.Dims()
if r == 0 || c == 0 {
panic(ErrShape)
}
// Max(A) = Max(Aᵀ)
aU, _ := untranspose(a)
switch m := aU.(type) {
case RawMatrixer:
rm := m.RawMatrix()
max := math.Inf(-1)
for i := 0; i < rm.Rows; i++ {
for _, v := range rm.Data[i*rm.Stride : i*rm.Stride+rm.Cols] {
if v > max {
max = v
}
}
}
return max
case RawTriangular:
rm := m.RawTriangular()
// The max of a triangular is at least 0 unless the size is 1.
if rm.N == 1 {
return rm.Data[0]
}
max := 0.0
if rm.Uplo == blas.Upper {
for i := 0; i < rm.N; i++ {
for _, v := range rm.Data[i*rm.Stride+i : i*rm.Stride+rm.N] {
if v > max {
max = v
}
}
}
return max
}
for i := 0; i < rm.N; i++ {
for _, v := range rm.Data[i*rm.Stride : i*rm.Stride+i+1] {
if v > max {
max = v
}
}
}
return max
case RawSymmetricer:
rm := m.RawSymmetric()
if rm.Uplo != blas.Upper {
panic(badSymTriangle)
}
max := math.Inf(-1)
for i := 0; i < rm.N; i++ {
for _, v := range rm.Data[i*rm.Stride+i : i*rm.Stride+rm.N] {
if v > max {
max = v
}
}
}
return max
default:
r, c := aU.Dims()
max := math.Inf(-1)
for i := 0; i < r; i++ {
for j := 0; j < c; j++ {
v := aU.At(i, j)
if v > max {
max = v
}
}
}
return max
}
}
// Min returns the smallest element value of the matrix A.
// Min will panic with matrix.ErrShape if the matrix has zero size.
func Min(a Matrix) float64 {
r, c := a.Dims()
if r == 0 || c == 0 {
panic(ErrShape)
}
// Min(A) = Min(Aᵀ)
aU, _ := untranspose(a)
switch m := aU.(type) {
case RawMatrixer:
rm := m.RawMatrix()
min := math.Inf(1)
for i := 0; i < rm.Rows; i++ {
for _, v := range rm.Data[i*rm.Stride : i*rm.Stride+rm.Cols] {
if v < min {
min = v
}
}
}
return min
case RawTriangular:
rm := m.RawTriangular()
// The min of a triangular is at most 0 unless the size is 1.
if rm.N == 1 {
return rm.Data[0]
}
min := 0.0
if rm.Uplo == blas.Upper {
for i := 0; i < rm.N; i++ {
for _, v := range rm.Data[i*rm.Stride+i : i*rm.Stride+rm.N] {
if v < min {
min = v
}
}
}
return min
}
for i := 0; i < rm.N; i++ {
for _, v := range rm.Data[i*rm.Stride : i*rm.Stride+i+1] {
if v < min {
min = v
}
}
}
return min
case RawSymmetricer:
rm := m.RawSymmetric()
if rm.Uplo != blas.Upper {
panic(badSymTriangle)
}
min := math.Inf(1)
for i := 0; i < rm.N; i++ {
for _, v := range rm.Data[i*rm.Stride+i : i*rm.Stride+rm.N] {
if v < min {
min = v
}
}
}
return min
default:
r, c := aU.Dims()
min := math.Inf(1)
for i := 0; i < r; i++ {
for j := 0; j < c; j++ {
v := aU.At(i, j)
if v < min {
min = v
}
}
}
return min
}
}
// Norm returns the specified (induced) norm of the matrix a. See
// https://en.wikipedia.org/wiki/Matrix_norm for the definition of an induced norm.
//
// Valid norms are:
// 1 - The maximum absolute column sum
// 2 - Frobenius norm, the square root of the sum of the squares of the elements.
// Inf - The maximum absolute row sum.
// Norm will panic with ErrNormOrder if an illegal norm order is specified and
// with matrix.ErrShape if the matrix has zero size.
func Norm(a Matrix, norm float64) float64 {
r, c := a.Dims()
if r == 0 || c == 0 {
panic(ErrShape)
}
aU, aTrans := untranspose(a)
var work []float64
switch rma := aU.(type) {
case RawMatrixer:
rm := rma.RawMatrix()
n := normLapack(norm, aTrans)
if n == lapack.MaxColumnSum {
work = getFloats(rm.Cols, false)
defer putFloats(work)
}
return lapack64.Lange(n, rm, work)
case RawTriangular:
rm := rma.RawTriangular()
n := normLapack(norm, aTrans)
if n == lapack.MaxRowSum || n == lapack.MaxColumnSum {
work = getFloats(rm.N, false)
defer putFloats(work)
}
return lapack64.Lantr(n, rm, work)
case RawSymmetricer:
rm := rma.RawSymmetric()
n := normLapack(norm, aTrans)
if n == lapack.MaxRowSum || n == lapack.MaxColumnSum {
work = getFloats(rm.N, false)
defer putFloats(work)
}
return lapack64.Lansy(n, rm, work)
case *VecDense:
rv := rma.RawVector()
switch norm {
default:
panic(ErrNormOrder)
case 1:
if aTrans {
imax := blas64.Iamax(rv)
return math.Abs(rma.At(imax, 0))
}
return blas64.Asum(rv)
case 2:
return blas64.Nrm2(rv)
case math.Inf(1):
if aTrans {
return blas64.Asum(rv)
}
imax := blas64.Iamax(rv)
return math.Abs(rma.At(imax, 0))
}
}
switch norm {
default:
panic(ErrNormOrder)
case 1:
var max float64
for j := 0; j < c; j++ {
var sum float64
for i := 0; i < r; i++ {
sum += math.Abs(a.At(i, j))
}
if sum > max {
max = sum
}
}
return max
case 2:
var sum float64
for i := 0; i < r; i++ {
for j := 0; j < c; j++ {
v := a.At(i, j)
sum += v * v
}
}
return math.Sqrt(sum)
case math.Inf(1):
var max float64
for i := 0; i < r; i++ {
var sum float64
for j := 0; j < c; j++ {
sum += math.Abs(a.At(i, j))
}
if sum > max {
max = sum
}
}
return max
}
}
// normLapack converts the float64 norm input in Norm to a lapack.MatrixNorm.
func normLapack(norm float64, aTrans bool) lapack.MatrixNorm {
switch norm {
case 1:
n := lapack.MaxColumnSum
if aTrans {
n = lapack.MaxRowSum
}
return n
case 2:
return lapack.Frobenius
case math.Inf(1):
n := lapack.MaxRowSum
if aTrans {
n = lapack.MaxColumnSum
}
return n
default:
panic(ErrNormOrder)
}
}
// Sum returns the sum of the elements of the matrix.
func Sum(a Matrix) float64 {
var sum float64
aU, _ := untranspose(a)
switch rma := aU.(type) {
case RawSymmetricer:
rm := rma.RawSymmetric()
for i := 0; i < rm.N; i++ {
// Diagonals count once while off-diagonals count twice.
sum += rm.Data[i*rm.Stride+i]
var s float64
for _, v := range rm.Data[i*rm.Stride+i+1 : i*rm.Stride+rm.N] {
s += v
}
sum += 2 * s
}
return sum
case RawTriangular:
rm := rma.RawTriangular()
var startIdx, endIdx int
for i := 0; i < rm.N; i++ {
// Start and end index for this triangle-row.
switch rm.Uplo {
case blas.Upper:
startIdx = i
endIdx = rm.N
case blas.Lower:
startIdx = 0
endIdx = i + 1
default:
panic(badTriangle)
}
for _, v := range rm.Data[i*rm.Stride+startIdx : i*rm.Stride+endIdx] {
sum += v
}
}
return sum
case RawMatrixer:
rm := rma.RawMatrix()
for i := 0; i < rm.Rows; i++ {
for _, v := range rm.Data[i*rm.Stride : i*rm.Stride+rm.Cols] {
sum += v
}
}
return sum
case *VecDense:
rm := rma.RawVector()
for i := 0; i < rm.N; i++ {
sum += rm.Data[i*rm.Inc]
}
return sum
default:
r, c := a.Dims()
for i := 0; i < r; i++ {
for j := 0; j < c; j++ {
sum += a.At(i, j)
}
}
return sum
}
}
// A Tracer can compute the trace of the matrix. Trace must panic if the
// matrix is not square.
type Tracer interface {
Trace() float64
}
// Trace returns the trace of the matrix. Trace will panic if the
// matrix is not square.
func Trace(a Matrix) float64 {
m, _ := untransposeExtract(a)
if t, ok := m.(Tracer); ok {
return t.Trace()
}
r, c := a.Dims()
if r != c {
panic(ErrSquare)
}
var v float64
for i := 0; i < r; i++ {
v += a.At(i, i)
}
return v
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
// use returns a float64 slice with l elements, using f if it
// has the necessary capacity, otherwise creating a new slice.
func use(f []float64, l int) []float64 {
if l <= cap(f) {
return f[:l]
}
return make([]float64, l)
}
// useZeroed returns a float64 slice with l elements, using f if it
// has the necessary capacity, otherwise creating a new slice. The
// elements of the returned slice are guaranteed to be zero.
func useZeroed(f []float64, l int) []float64 {
if l <= cap(f) {
f = f[:l]
zero(f)
return f
}
return make([]float64, l)
}
// zero zeros the given slice's elements.
func zero(f []float64) {
for i := range f {
f[i] = 0
}
}
// useInt returns an int slice with l elements, using i if it
// has the necessary capacity, otherwise creating a new slice.
func useInt(i []int, l int) []int {
if l <= cap(i) {
return i[:l]
}
return make([]int, l)
}