mirror of https://github.com/k3s-io/k3s
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
502 lines
12 KiB
502 lines
12 KiB
// Copyright 2013 The Go Authors. All rights reserved. |
|
// Use of this source code is governed by a BSD-style |
|
// license that can be found in the LICENSE file. |
|
|
|
package yaml |
|
|
|
import ( |
|
"bytes" |
|
"encoding" |
|
"encoding/json" |
|
"reflect" |
|
"sort" |
|
"strings" |
|
"sync" |
|
"unicode" |
|
"unicode/utf8" |
|
) |
|
|
|
// indirect walks down v allocating pointers as needed, |
|
// until it gets to a non-pointer. |
|
// if it encounters an Unmarshaler, indirect stops and returns that. |
|
// if decodingNull is true, indirect stops at the last pointer so it can be set to nil. |
|
func indirect(v reflect.Value, decodingNull bool) (json.Unmarshaler, encoding.TextUnmarshaler, reflect.Value) { |
|
// If v is a named type and is addressable, |
|
// start with its address, so that if the type has pointer methods, |
|
// we find them. |
|
if v.Kind() != reflect.Ptr && v.Type().Name() != "" && v.CanAddr() { |
|
v = v.Addr() |
|
} |
|
for { |
|
// Load value from interface, but only if the result will be |
|
// usefully addressable. |
|
if v.Kind() == reflect.Interface && !v.IsNil() { |
|
e := v.Elem() |
|
if e.Kind() == reflect.Ptr && !e.IsNil() && (!decodingNull || e.Elem().Kind() == reflect.Ptr) { |
|
v = e |
|
continue |
|
} |
|
} |
|
|
|
if v.Kind() != reflect.Ptr { |
|
break |
|
} |
|
|
|
if v.Elem().Kind() != reflect.Ptr && decodingNull && v.CanSet() { |
|
break |
|
} |
|
if v.IsNil() { |
|
if v.CanSet() { |
|
v.Set(reflect.New(v.Type().Elem())) |
|
} else { |
|
v = reflect.New(v.Type().Elem()) |
|
} |
|
} |
|
if v.Type().NumMethod() > 0 { |
|
if u, ok := v.Interface().(json.Unmarshaler); ok { |
|
return u, nil, reflect.Value{} |
|
} |
|
if u, ok := v.Interface().(encoding.TextUnmarshaler); ok { |
|
return nil, u, reflect.Value{} |
|
} |
|
} |
|
v = v.Elem() |
|
} |
|
return nil, nil, v |
|
} |
|
|
|
// A field represents a single field found in a struct. |
|
type field struct { |
|
name string |
|
nameBytes []byte // []byte(name) |
|
equalFold func(s, t []byte) bool // bytes.EqualFold or equivalent |
|
|
|
tag bool |
|
index []int |
|
typ reflect.Type |
|
omitEmpty bool |
|
quoted bool |
|
} |
|
|
|
func fillField(f field) field { |
|
f.nameBytes = []byte(f.name) |
|
f.equalFold = foldFunc(f.nameBytes) |
|
return f |
|
} |
|
|
|
// byName sorts field by name, breaking ties with depth, |
|
// then breaking ties with "name came from json tag", then |
|
// breaking ties with index sequence. |
|
type byName []field |
|
|
|
func (x byName) Len() int { return len(x) } |
|
|
|
func (x byName) Swap(i, j int) { x[i], x[j] = x[j], x[i] } |
|
|
|
func (x byName) Less(i, j int) bool { |
|
if x[i].name != x[j].name { |
|
return x[i].name < x[j].name |
|
} |
|
if len(x[i].index) != len(x[j].index) { |
|
return len(x[i].index) < len(x[j].index) |
|
} |
|
if x[i].tag != x[j].tag { |
|
return x[i].tag |
|
} |
|
return byIndex(x).Less(i, j) |
|
} |
|
|
|
// byIndex sorts field by index sequence. |
|
type byIndex []field |
|
|
|
func (x byIndex) Len() int { return len(x) } |
|
|
|
func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] } |
|
|
|
func (x byIndex) Less(i, j int) bool { |
|
for k, xik := range x[i].index { |
|
if k >= len(x[j].index) { |
|
return false |
|
} |
|
if xik != x[j].index[k] { |
|
return xik < x[j].index[k] |
|
} |
|
} |
|
return len(x[i].index) < len(x[j].index) |
|
} |
|
|
|
// typeFields returns a list of fields that JSON should recognize for the given type. |
|
// The algorithm is breadth-first search over the set of structs to include - the top struct |
|
// and then any reachable anonymous structs. |
|
func typeFields(t reflect.Type) []field { |
|
// Anonymous fields to explore at the current level and the next. |
|
current := []field{} |
|
next := []field{{typ: t}} |
|
|
|
// Count of queued names for current level and the next. |
|
count := map[reflect.Type]int{} |
|
nextCount := map[reflect.Type]int{} |
|
|
|
// Types already visited at an earlier level. |
|
visited := map[reflect.Type]bool{} |
|
|
|
// Fields found. |
|
var fields []field |
|
|
|
for len(next) > 0 { |
|
current, next = next, current[:0] |
|
count, nextCount = nextCount, map[reflect.Type]int{} |
|
|
|
for _, f := range current { |
|
if visited[f.typ] { |
|
continue |
|
} |
|
visited[f.typ] = true |
|
|
|
// Scan f.typ for fields to include. |
|
for i := 0; i < f.typ.NumField(); i++ { |
|
sf := f.typ.Field(i) |
|
if sf.PkgPath != "" { // unexported |
|
continue |
|
} |
|
tag := sf.Tag.Get("json") |
|
if tag == "-" { |
|
continue |
|
} |
|
name, opts := parseTag(tag) |
|
if !isValidTag(name) { |
|
name = "" |
|
} |
|
index := make([]int, len(f.index)+1) |
|
copy(index, f.index) |
|
index[len(f.index)] = i |
|
|
|
ft := sf.Type |
|
if ft.Name() == "" && ft.Kind() == reflect.Ptr { |
|
// Follow pointer. |
|
ft = ft.Elem() |
|
} |
|
|
|
// Record found field and index sequence. |
|
if name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct { |
|
tagged := name != "" |
|
if name == "" { |
|
name = sf.Name |
|
} |
|
fields = append(fields, fillField(field{ |
|
name: name, |
|
tag: tagged, |
|
index: index, |
|
typ: ft, |
|
omitEmpty: opts.Contains("omitempty"), |
|
quoted: opts.Contains("string"), |
|
})) |
|
if count[f.typ] > 1 { |
|
// If there were multiple instances, add a second, |
|
// so that the annihilation code will see a duplicate. |
|
// It only cares about the distinction between 1 or 2, |
|
// so don't bother generating any more copies. |
|
fields = append(fields, fields[len(fields)-1]) |
|
} |
|
continue |
|
} |
|
|
|
// Record new anonymous struct to explore in next round. |
|
nextCount[ft]++ |
|
if nextCount[ft] == 1 { |
|
next = append(next, fillField(field{name: ft.Name(), index: index, typ: ft})) |
|
} |
|
} |
|
} |
|
} |
|
|
|
sort.Sort(byName(fields)) |
|
|
|
// Delete all fields that are hidden by the Go rules for embedded fields, |
|
// except that fields with JSON tags are promoted. |
|
|
|
// The fields are sorted in primary order of name, secondary order |
|
// of field index length. Loop over names; for each name, delete |
|
// hidden fields by choosing the one dominant field that survives. |
|
out := fields[:0] |
|
for advance, i := 0, 0; i < len(fields); i += advance { |
|
// One iteration per name. |
|
// Find the sequence of fields with the name of this first field. |
|
fi := fields[i] |
|
name := fi.name |
|
for advance = 1; i+advance < len(fields); advance++ { |
|
fj := fields[i+advance] |
|
if fj.name != name { |
|
break |
|
} |
|
} |
|
if advance == 1 { // Only one field with this name |
|
out = append(out, fi) |
|
continue |
|
} |
|
dominant, ok := dominantField(fields[i : i+advance]) |
|
if ok { |
|
out = append(out, dominant) |
|
} |
|
} |
|
|
|
fields = out |
|
sort.Sort(byIndex(fields)) |
|
|
|
return fields |
|
} |
|
|
|
// dominantField looks through the fields, all of which are known to |
|
// have the same name, to find the single field that dominates the |
|
// others using Go's embedding rules, modified by the presence of |
|
// JSON tags. If there are multiple top-level fields, the boolean |
|
// will be false: This condition is an error in Go and we skip all |
|
// the fields. |
|
func dominantField(fields []field) (field, bool) { |
|
// The fields are sorted in increasing index-length order. The winner |
|
// must therefore be one with the shortest index length. Drop all |
|
// longer entries, which is easy: just truncate the slice. |
|
length := len(fields[0].index) |
|
tagged := -1 // Index of first tagged field. |
|
for i, f := range fields { |
|
if len(f.index) > length { |
|
fields = fields[:i] |
|
break |
|
} |
|
if f.tag { |
|
if tagged >= 0 { |
|
// Multiple tagged fields at the same level: conflict. |
|
// Return no field. |
|
return field{}, false |
|
} |
|
tagged = i |
|
} |
|
} |
|
if tagged >= 0 { |
|
return fields[tagged], true |
|
} |
|
// All remaining fields have the same length. If there's more than one, |
|
// we have a conflict (two fields named "X" at the same level) and we |
|
// return no field. |
|
if len(fields) > 1 { |
|
return field{}, false |
|
} |
|
return fields[0], true |
|
} |
|
|
|
var fieldCache struct { |
|
sync.RWMutex |
|
m map[reflect.Type][]field |
|
} |
|
|
|
// cachedTypeFields is like typeFields but uses a cache to avoid repeated work. |
|
func cachedTypeFields(t reflect.Type) []field { |
|
fieldCache.RLock() |
|
f := fieldCache.m[t] |
|
fieldCache.RUnlock() |
|
if f != nil { |
|
return f |
|
} |
|
|
|
// Compute fields without lock. |
|
// Might duplicate effort but won't hold other computations back. |
|
f = typeFields(t) |
|
if f == nil { |
|
f = []field{} |
|
} |
|
|
|
fieldCache.Lock() |
|
if fieldCache.m == nil { |
|
fieldCache.m = map[reflect.Type][]field{} |
|
} |
|
fieldCache.m[t] = f |
|
fieldCache.Unlock() |
|
return f |
|
} |
|
|
|
func isValidTag(s string) bool { |
|
if s == "" { |
|
return false |
|
} |
|
for _, c := range s { |
|
switch { |
|
case strings.ContainsRune("!#$%&()*+-./:<=>?@[]^_{|}~ ", c): |
|
// Backslash and quote chars are reserved, but |
|
// otherwise any punctuation chars are allowed |
|
// in a tag name. |
|
default: |
|
if !unicode.IsLetter(c) && !unicode.IsDigit(c) { |
|
return false |
|
} |
|
} |
|
} |
|
return true |
|
} |
|
|
|
const ( |
|
caseMask = ^byte(0x20) // Mask to ignore case in ASCII. |
|
kelvin = '\u212a' |
|
smallLongEss = '\u017f' |
|
) |
|
|
|
// foldFunc returns one of four different case folding equivalence |
|
// functions, from most general (and slow) to fastest: |
|
// |
|
// 1) bytes.EqualFold, if the key s contains any non-ASCII UTF-8 |
|
// 2) equalFoldRight, if s contains special folding ASCII ('k', 'K', 's', 'S') |
|
// 3) asciiEqualFold, no special, but includes non-letters (including _) |
|
// 4) simpleLetterEqualFold, no specials, no non-letters. |
|
// |
|
// The letters S and K are special because they map to 3 runes, not just 2: |
|
// * S maps to s and to U+017F 'ſ' Latin small letter long s |
|
// * k maps to K and to U+212A 'K' Kelvin sign |
|
// See http://play.golang.org/p/tTxjOc0OGo |
|
// |
|
// The returned function is specialized for matching against s and |
|
// should only be given s. It's not curried for performance reasons. |
|
func foldFunc(s []byte) func(s, t []byte) bool { |
|
nonLetter := false |
|
special := false // special letter |
|
for _, b := range s { |
|
if b >= utf8.RuneSelf { |
|
return bytes.EqualFold |
|
} |
|
upper := b & caseMask |
|
if upper < 'A' || upper > 'Z' { |
|
nonLetter = true |
|
} else if upper == 'K' || upper == 'S' { |
|
// See above for why these letters are special. |
|
special = true |
|
} |
|
} |
|
if special { |
|
return equalFoldRight |
|
} |
|
if nonLetter { |
|
return asciiEqualFold |
|
} |
|
return simpleLetterEqualFold |
|
} |
|
|
|
// equalFoldRight is a specialization of bytes.EqualFold when s is |
|
// known to be all ASCII (including punctuation), but contains an 's', |
|
// 'S', 'k', or 'K', requiring a Unicode fold on the bytes in t. |
|
// See comments on foldFunc. |
|
func equalFoldRight(s, t []byte) bool { |
|
for _, sb := range s { |
|
if len(t) == 0 { |
|
return false |
|
} |
|
tb := t[0] |
|
if tb < utf8.RuneSelf { |
|
if sb != tb { |
|
sbUpper := sb & caseMask |
|
if 'A' <= sbUpper && sbUpper <= 'Z' { |
|
if sbUpper != tb&caseMask { |
|
return false |
|
} |
|
} else { |
|
return false |
|
} |
|
} |
|
t = t[1:] |
|
continue |
|
} |
|
// sb is ASCII and t is not. t must be either kelvin |
|
// sign or long s; sb must be s, S, k, or K. |
|
tr, size := utf8.DecodeRune(t) |
|
switch sb { |
|
case 's', 'S': |
|
if tr != smallLongEss { |
|
return false |
|
} |
|
case 'k', 'K': |
|
if tr != kelvin { |
|
return false |
|
} |
|
default: |
|
return false |
|
} |
|
t = t[size:] |
|
|
|
} |
|
if len(t) > 0 { |
|
return false |
|
} |
|
return true |
|
} |
|
|
|
// asciiEqualFold is a specialization of bytes.EqualFold for use when |
|
// s is all ASCII (but may contain non-letters) and contains no |
|
// special-folding letters. |
|
// See comments on foldFunc. |
|
func asciiEqualFold(s, t []byte) bool { |
|
if len(s) != len(t) { |
|
return false |
|
} |
|
for i, sb := range s { |
|
tb := t[i] |
|
if sb == tb { |
|
continue |
|
} |
|
if ('a' <= sb && sb <= 'z') || ('A' <= sb && sb <= 'Z') { |
|
if sb&caseMask != tb&caseMask { |
|
return false |
|
} |
|
} else { |
|
return false |
|
} |
|
} |
|
return true |
|
} |
|
|
|
// simpleLetterEqualFold is a specialization of bytes.EqualFold for |
|
// use when s is all ASCII letters (no underscores, etc) and also |
|
// doesn't contain 'k', 'K', 's', or 'S'. |
|
// See comments on foldFunc. |
|
func simpleLetterEqualFold(s, t []byte) bool { |
|
if len(s) != len(t) { |
|
return false |
|
} |
|
for i, b := range s { |
|
if b&caseMask != t[i]&caseMask { |
|
return false |
|
} |
|
} |
|
return true |
|
} |
|
|
|
// tagOptions is the string following a comma in a struct field's "json" |
|
// tag, or the empty string. It does not include the leading comma. |
|
type tagOptions string |
|
|
|
// parseTag splits a struct field's json tag into its name and |
|
// comma-separated options. |
|
func parseTag(tag string) (string, tagOptions) { |
|
if idx := strings.Index(tag, ","); idx != -1 { |
|
return tag[:idx], tagOptions(tag[idx+1:]) |
|
} |
|
return tag, tagOptions("") |
|
} |
|
|
|
// Contains reports whether a comma-separated list of options |
|
// contains a particular substr flag. substr must be surrounded by a |
|
// string boundary or commas. |
|
func (o tagOptions) Contains(optionName string) bool { |
|
if len(o) == 0 { |
|
return false |
|
} |
|
s := string(o) |
|
for s != "" { |
|
var next string |
|
i := strings.Index(s, ",") |
|
if i >= 0 { |
|
s, next = s[:i], s[i+1:] |
|
} |
|
if s == optionName { |
|
return true |
|
} |
|
s = next |
|
} |
|
return false |
|
}
|
|
|