mirror of https://github.com/k3s-io/k3s
231 lines
6.4 KiB
Go
231 lines
6.4 KiB
Go
// Copyright ©2016 The Gonum Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package gonum
|
||
|
||
import "gonum.org/v1/gonum/lapack"
|
||
|
||
// Dtrexc reorders the real Schur factorization of a n×n real matrix
|
||
// A = Q*T*Qᵀ
|
||
// so that the diagonal block of T with row index ifst is moved to row ilst.
|
||
//
|
||
// On entry, T must be in Schur canonical form, that is, block upper triangular
|
||
// with 1×1 and 2×2 diagonal blocks; each 2×2 diagonal block has its diagonal
|
||
// elements equal and its off-diagonal elements of opposite sign.
|
||
//
|
||
// On return, T will be reordered by an orthogonal similarity transformation Z
|
||
// as Zᵀ*T*Z, and will be again in Schur canonical form.
|
||
//
|
||
// If compq is lapack.UpdateSchur, on return the matrix Q of Schur vectors will be
|
||
// updated by post-multiplying it with Z.
|
||
// If compq is lapack.UpdateSchurNone, the matrix Q is not referenced and will not be
|
||
// updated.
|
||
// For other values of compq Dtrexc will panic.
|
||
//
|
||
// ifst and ilst specify the reordering of the diagonal blocks of T. The block
|
||
// with row index ifst is moved to row ilst, by a sequence of transpositions
|
||
// between adjacent blocks.
|
||
//
|
||
// If ifst points to the second row of a 2×2 block, ifstOut will point to the
|
||
// first row, otherwise it will be equal to ifst.
|
||
//
|
||
// ilstOut will point to the first row of the block in its final position. If ok
|
||
// is true, ilstOut may differ from ilst by +1 or -1.
|
||
//
|
||
// It must hold that
|
||
// 0 <= ifst < n, and 0 <= ilst < n,
|
||
// otherwise Dtrexc will panic.
|
||
//
|
||
// If ok is false, two adjacent blocks were too close to swap because the
|
||
// problem is very ill-conditioned. T may have been partially reordered, and
|
||
// ilstOut will point to the first row of the block at the position to which it
|
||
// has been moved.
|
||
//
|
||
// work must have length at least n, otherwise Dtrexc will panic.
|
||
//
|
||
// Dtrexc is an internal routine. It is exported for testing purposes.
|
||
func (impl Implementation) Dtrexc(compq lapack.UpdateSchurComp, n int, t []float64, ldt int, q []float64, ldq int, ifst, ilst int, work []float64) (ifstOut, ilstOut int, ok bool) {
|
||
switch {
|
||
case compq != lapack.UpdateSchur && compq != lapack.UpdateSchurNone:
|
||
panic(badUpdateSchurComp)
|
||
case n < 0:
|
||
panic(nLT0)
|
||
case ldt < max(1, n):
|
||
panic(badLdT)
|
||
case ldq < 1, compq == lapack.UpdateSchur && ldq < n:
|
||
panic(badLdQ)
|
||
case (ifst < 0 || n <= ifst) && n > 0:
|
||
panic(badIfst)
|
||
case (ilst < 0 || n <= ilst) && n > 0:
|
||
panic(badIlst)
|
||
}
|
||
|
||
// Quick return if possible.
|
||
if n == 0 {
|
||
return ifst, ilst, true
|
||
}
|
||
|
||
switch {
|
||
case len(t) < (n-1)*ldt+n:
|
||
panic(shortT)
|
||
case compq == lapack.UpdateSchur && len(q) < (n-1)*ldq+n:
|
||
panic(shortQ)
|
||
case len(work) < n:
|
||
panic(shortWork)
|
||
}
|
||
|
||
// Quick return if possible.
|
||
if n == 1 {
|
||
return ifst, ilst, true
|
||
}
|
||
|
||
// Determine the first row of specified block
|
||
// and find out it is 1×1 or 2×2.
|
||
if ifst > 0 && t[ifst*ldt+ifst-1] != 0 {
|
||
ifst--
|
||
}
|
||
nbf := 1 // Size of the first block.
|
||
if ifst+1 < n && t[(ifst+1)*ldt+ifst] != 0 {
|
||
nbf = 2
|
||
}
|
||
// Determine the first row of the final block
|
||
// and find out it is 1×1 or 2×2.
|
||
if ilst > 0 && t[ilst*ldt+ilst-1] != 0 {
|
||
ilst--
|
||
}
|
||
nbl := 1 // Size of the last block.
|
||
if ilst+1 < n && t[(ilst+1)*ldt+ilst] != 0 {
|
||
nbl = 2
|
||
}
|
||
|
||
ok = true
|
||
wantq := compq == lapack.UpdateSchur
|
||
|
||
switch {
|
||
case ifst == ilst:
|
||
return ifst, ilst, true
|
||
|
||
case ifst < ilst:
|
||
// Update ilst.
|
||
switch {
|
||
case nbf == 2 && nbl == 1:
|
||
ilst--
|
||
case nbf == 1 && nbl == 2:
|
||
ilst++
|
||
}
|
||
here := ifst
|
||
for here < ilst {
|
||
// Swap block with next one below.
|
||
if nbf == 1 || nbf == 2 {
|
||
// Current block either 1×1 or 2×2.
|
||
nbnext := 1 // Size of the next block.
|
||
if here+nbf+1 < n && t[(here+nbf+1)*ldt+here+nbf] != 0 {
|
||
nbnext = 2
|
||
}
|
||
ok = impl.Dlaexc(wantq, n, t, ldt, q, ldq, here, nbf, nbnext, work)
|
||
if !ok {
|
||
return ifst, here, false
|
||
}
|
||
here += nbnext
|
||
// Test if 2×2 block breaks into two 1×1 blocks.
|
||
if nbf == 2 && t[(here+1)*ldt+here] == 0 {
|
||
nbf = 3
|
||
}
|
||
continue
|
||
}
|
||
|
||
// Current block consists of two 1×1 blocks each of
|
||
// which must be swapped individually.
|
||
nbnext := 1 // Size of the next block.
|
||
if here+3 < n && t[(here+3)*ldt+here+2] != 0 {
|
||
nbnext = 2
|
||
}
|
||
ok = impl.Dlaexc(wantq, n, t, ldt, q, ldq, here+1, 1, nbnext, work)
|
||
if !ok {
|
||
return ifst, here, false
|
||
}
|
||
if nbnext == 1 {
|
||
// Swap two 1×1 blocks, no problems possible.
|
||
impl.Dlaexc(wantq, n, t, ldt, q, ldq, here, 1, nbnext, work)
|
||
here++
|
||
continue
|
||
}
|
||
// Recompute nbnext in case 2×2 split.
|
||
if t[(here+2)*ldt+here+1] == 0 {
|
||
nbnext = 1
|
||
}
|
||
if nbnext == 2 {
|
||
// 2×2 block did not split.
|
||
ok = impl.Dlaexc(wantq, n, t, ldt, q, ldq, here, 1, nbnext, work)
|
||
if !ok {
|
||
return ifst, here, false
|
||
}
|
||
} else {
|
||
// 2×2 block did split.
|
||
impl.Dlaexc(wantq, n, t, ldt, q, ldq, here, 1, 1, work)
|
||
impl.Dlaexc(wantq, n, t, ldt, q, ldq, here+1, 1, 1, work)
|
||
}
|
||
here += 2
|
||
}
|
||
return ifst, here, true
|
||
|
||
default: // ifst > ilst
|
||
here := ifst
|
||
for here > ilst {
|
||
// Swap block with next one above.
|
||
if nbf == 1 || nbf == 2 {
|
||
// Current block either 1×1 or 2×2.
|
||
nbnext := 1
|
||
if here-2 >= 0 && t[(here-1)*ldt+here-2] != 0 {
|
||
nbnext = 2
|
||
}
|
||
ok = impl.Dlaexc(wantq, n, t, ldt, q, ldq, here-nbnext, nbnext, nbf, work)
|
||
if !ok {
|
||
return ifst, here, false
|
||
}
|
||
here -= nbnext
|
||
// Test if 2×2 block breaks into two 1×1 blocks.
|
||
if nbf == 2 && t[(here+1)*ldt+here] == 0 {
|
||
nbf = 3
|
||
}
|
||
continue
|
||
}
|
||
|
||
// Current block consists of two 1×1 blocks each of
|
||
// which must be swapped individually.
|
||
nbnext := 1
|
||
if here-2 >= 0 && t[(here-1)*ldt+here-2] != 0 {
|
||
nbnext = 2
|
||
}
|
||
ok = impl.Dlaexc(wantq, n, t, ldt, q, ldq, here-nbnext, nbnext, 1, work)
|
||
if !ok {
|
||
return ifst, here, false
|
||
}
|
||
if nbnext == 1 {
|
||
// Swap two 1×1 blocks, no problems possible.
|
||
impl.Dlaexc(wantq, n, t, ldt, q, ldq, here, nbnext, 1, work)
|
||
here--
|
||
continue
|
||
}
|
||
// Recompute nbnext in case 2×2 split.
|
||
if t[here*ldt+here-1] == 0 {
|
||
nbnext = 1
|
||
}
|
||
if nbnext == 2 {
|
||
// 2×2 block did not split.
|
||
ok = impl.Dlaexc(wantq, n, t, ldt, q, ldq, here-1, 2, 1, work)
|
||
if !ok {
|
||
return ifst, here, false
|
||
}
|
||
} else {
|
||
// 2×2 block did split.
|
||
impl.Dlaexc(wantq, n, t, ldt, q, ldq, here, 1, 1, work)
|
||
impl.Dlaexc(wantq, n, t, ldt, q, ldq, here-1, 1, 1, work)
|
||
}
|
||
here -= 2
|
||
}
|
||
return ifst, here, true
|
||
}
|
||
}
|