k3s/vendor/gonum.org/v1/gonum/lapack/gonum/dtgsja.go

374 lines
9.9 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"math"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/lapack"
)
// Dtgsja computes the generalized singular value decomposition (GSVD)
// of two real upper triangular or trapezoidal matrices A and B.
//
// A and B have the following forms, which may be obtained by the
// preprocessing subroutine Dggsvp from a general m×n matrix A and p×n
// matrix B:
//
// n-k-l k l
// A = k [ 0 A12 A13 ] if m-k-l >= 0;
// l [ 0 0 A23 ]
// m-k-l [ 0 0 0 ]
//
// n-k-l k l
// A = k [ 0 A12 A13 ] if m-k-l < 0;
// m-k [ 0 0 A23 ]
//
// n-k-l k l
// B = l [ 0 0 B13 ]
// p-l [ 0 0 0 ]
//
// where the k×k matrix A12 and l×l matrix B13 are non-singular
// upper triangular. A23 is l×l upper triangular if m-k-l >= 0,
// otherwise A23 is (m-k)×l upper trapezoidal.
//
// On exit,
//
// Uᵀ*A*Q = D1*[ 0 R ], Vᵀ*B*Q = D2*[ 0 R ],
//
// where U, V and Q are orthogonal matrices.
// R is a non-singular upper triangular matrix, and D1 and D2 are
// diagonal matrices, which are of the following structures:
//
// If m-k-l >= 0,
//
// k l
// D1 = k [ I 0 ]
// l [ 0 C ]
// m-k-l [ 0 0 ]
//
// k l
// D2 = l [ 0 S ]
// p-l [ 0 0 ]
//
// n-k-l k l
// [ 0 R ] = k [ 0 R11 R12 ] k
// l [ 0 0 R22 ] l
//
// where
//
// C = diag( alpha_k, ... , alpha_{k+l} ),
// S = diag( beta_k, ... , beta_{k+l} ),
// C^2 + S^2 = I.
//
// R is stored in
// A[0:k+l, n-k-l:n]
// on exit.
//
// If m-k-l < 0,
//
// k m-k k+l-m
// D1 = k [ I 0 0 ]
// m-k [ 0 C 0 ]
//
// k m-k k+l-m
// D2 = m-k [ 0 S 0 ]
// k+l-m [ 0 0 I ]
// p-l [ 0 0 0 ]
//
// n-k-l k m-k k+l-m
// [ 0 R ] = k [ 0 R11 R12 R13 ]
// m-k [ 0 0 R22 R23 ]
// k+l-m [ 0 0 0 R33 ]
//
// where
// C = diag( alpha_k, ... , alpha_m ),
// S = diag( beta_k, ... , beta_m ),
// C^2 + S^2 = I.
//
// R = [ R11 R12 R13 ] is stored in A[0:m, n-k-l:n]
// [ 0 R22 R23 ]
// and R33 is stored in
// B[m-k:l, n+m-k-l:n] on exit.
//
// The computation of the orthogonal transformation matrices U, V or Q
// is optional. These matrices may either be formed explicitly, or they
// may be post-multiplied into input matrices U1, V1, or Q1.
//
// Dtgsja essentially uses a variant of Kogbetliantz algorithm to reduce
// min(l,m-k)×l triangular or trapezoidal matrix A23 and l×l
// matrix B13 to the form:
//
// U1ᵀ*A13*Q1 = C1*R1; V1ᵀ*B13*Q1 = S1*R1,
//
// where U1, V1 and Q1 are orthogonal matrices. C1 and S1 are diagonal
// matrices satisfying
//
// C1^2 + S1^2 = I,
//
// and R1 is an l×l non-singular upper triangular matrix.
//
// jobU, jobV and jobQ are options for computing the orthogonal matrices. The behavior
// is as follows
// jobU == lapack.GSVDU Compute orthogonal matrix U
// jobU == lapack.GSVDUnit Use unit-initialized matrix
// jobU == lapack.GSVDNone Do not compute orthogonal matrix.
// The behavior is the same for jobV and jobQ with the exception that instead of
// lapack.GSVDU these accept lapack.GSVDV and lapack.GSVDQ respectively.
// The matrices U, V and Q must be m×m, p×p and n×n respectively unless the
// relevant job parameter is lapack.GSVDNone.
//
// k and l specify the sub-blocks in the input matrices A and B:
// A23 = A[k:min(k+l,m), n-l:n) and B13 = B[0:l, n-l:n]
// of A and B, whose GSVD is going to be computed by Dtgsja.
//
// tola and tolb are the convergence criteria for the Jacobi-Kogbetliantz
// iteration procedure. Generally, they are the same as used in the preprocessing
// step, for example,
// tola = max(m, n)*norm(A)*eps,
// tolb = max(p, n)*norm(B)*eps,
// where eps is the machine epsilon.
//
// work must have length at least 2*n, otherwise Dtgsja will panic.
//
// alpha and beta must have length n or Dtgsja will panic. On exit, alpha and
// beta contain the generalized singular value pairs of A and B
// alpha[0:k] = 1,
// beta[0:k] = 0,
// if m-k-l >= 0,
// alpha[k:k+l] = diag(C),
// beta[k:k+l] = diag(S),
// if m-k-l < 0,
// alpha[k:m]= C, alpha[m:k+l]= 0
// beta[k:m] = S, beta[m:k+l] = 1.
// if k+l < n,
// alpha[k+l:n] = 0 and
// beta[k+l:n] = 0.
//
// On exit, A[n-k:n, 0:min(k+l,m)] contains the triangular matrix R or part of R
// and if necessary, B[m-k:l, n+m-k-l:n] contains a part of R.
//
// Dtgsja returns whether the routine converged and the number of iteration cycles
// that were run.
//
// Dtgsja is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dtgsja(jobU, jobV, jobQ lapack.GSVDJob, m, p, n, k, l int, a []float64, lda int, b []float64, ldb int, tola, tolb float64, alpha, beta, u []float64, ldu int, v []float64, ldv int, q []float64, ldq int, work []float64) (cycles int, ok bool) {
const maxit = 40
initu := jobU == lapack.GSVDUnit
wantu := initu || jobU == lapack.GSVDU
initv := jobV == lapack.GSVDUnit
wantv := initv || jobV == lapack.GSVDV
initq := jobQ == lapack.GSVDUnit
wantq := initq || jobQ == lapack.GSVDQ
switch {
case !initu && !wantu && jobU != lapack.GSVDNone:
panic(badGSVDJob + "U")
case !initv && !wantv && jobV != lapack.GSVDNone:
panic(badGSVDJob + "V")
case !initq && !wantq && jobQ != lapack.GSVDNone:
panic(badGSVDJob + "Q")
case m < 0:
panic(mLT0)
case p < 0:
panic(pLT0)
case n < 0:
panic(nLT0)
case lda < max(1, n):
panic(badLdA)
case len(a) < (m-1)*lda+n:
panic(shortA)
case ldb < max(1, n):
panic(badLdB)
case len(b) < (p-1)*ldb+n:
panic(shortB)
case len(alpha) != n:
panic(badLenAlpha)
case len(beta) != n:
panic(badLenBeta)
case ldu < 1, wantu && ldu < m:
panic(badLdU)
case wantu && len(u) < (m-1)*ldu+m:
panic(shortU)
case ldv < 1, wantv && ldv < p:
panic(badLdV)
case wantv && len(v) < (p-1)*ldv+p:
panic(shortV)
case ldq < 1, wantq && ldq < n:
panic(badLdQ)
case wantq && len(q) < (n-1)*ldq+n:
panic(shortQ)
case len(work) < 2*n:
panic(shortWork)
}
// Initialize U, V and Q, if necessary
if initu {
impl.Dlaset(blas.All, m, m, 0, 1, u, ldu)
}
if initv {
impl.Dlaset(blas.All, p, p, 0, 1, v, ldv)
}
if initq {
impl.Dlaset(blas.All, n, n, 0, 1, q, ldq)
}
bi := blas64.Implementation()
minTol := math.Min(tola, tolb)
// Loop until convergence.
upper := false
for cycles = 1; cycles <= maxit; cycles++ {
upper = !upper
for i := 0; i < l-1; i++ {
for j := i + 1; j < l; j++ {
var a1, a2, a3 float64
if k+i < m {
a1 = a[(k+i)*lda+n-l+i]
}
if k+j < m {
a3 = a[(k+j)*lda+n-l+j]
}
b1 := b[i*ldb+n-l+i]
b3 := b[j*ldb+n-l+j]
var b2 float64
if upper {
if k+i < m {
a2 = a[(k+i)*lda+n-l+j]
}
b2 = b[i*ldb+n-l+j]
} else {
if k+j < m {
a2 = a[(k+j)*lda+n-l+i]
}
b2 = b[j*ldb+n-l+i]
}
csu, snu, csv, snv, csq, snq := impl.Dlags2(upper, a1, a2, a3, b1, b2, b3)
// Update (k+i)-th and (k+j)-th rows of matrix A: Uᵀ*A.
if k+j < m {
bi.Drot(l, a[(k+j)*lda+n-l:], 1, a[(k+i)*lda+n-l:], 1, csu, snu)
}
// Update i-th and j-th rows of matrix B: Vᵀ*B.
bi.Drot(l, b[j*ldb+n-l:], 1, b[i*ldb+n-l:], 1, csv, snv)
// Update (n-l+i)-th and (n-l+j)-th columns of matrices
// A and B: A*Q and B*Q.
bi.Drot(min(k+l, m), a[n-l+j:], lda, a[n-l+i:], lda, csq, snq)
bi.Drot(l, b[n-l+j:], ldb, b[n-l+i:], ldb, csq, snq)
if upper {
if k+i < m {
a[(k+i)*lda+n-l+j] = 0
}
b[i*ldb+n-l+j] = 0
} else {
if k+j < m {
a[(k+j)*lda+n-l+i] = 0
}
b[j*ldb+n-l+i] = 0
}
// Update orthogonal matrices U, V, Q, if desired.
if wantu && k+j < m {
bi.Drot(m, u[k+j:], ldu, u[k+i:], ldu, csu, snu)
}
if wantv {
bi.Drot(p, v[j:], ldv, v[i:], ldv, csv, snv)
}
if wantq {
bi.Drot(n, q[n-l+j:], ldq, q[n-l+i:], ldq, csq, snq)
}
}
}
if !upper {
// The matrices A13 and B13 were lower triangular at the start
// of the cycle, and are now upper triangular.
//
// Convergence test: test the parallelism of the corresponding
// rows of A and B.
var error float64
for i := 0; i < min(l, m-k); i++ {
bi.Dcopy(l-i, a[(k+i)*lda+n-l+i:], 1, work, 1)
bi.Dcopy(l-i, b[i*ldb+n-l+i:], 1, work[l:], 1)
ssmin := impl.Dlapll(l-i, work, 1, work[l:], 1)
error = math.Max(error, ssmin)
}
if math.Abs(error) <= minTol {
// The algorithm has converged.
// Compute the generalized singular value pairs (alpha, beta)
// and set the triangular matrix R to array A.
for i := 0; i < k; i++ {
alpha[i] = 1
beta[i] = 0
}
for i := 0; i < min(l, m-k); i++ {
a1 := a[(k+i)*lda+n-l+i]
b1 := b[i*ldb+n-l+i]
if a1 != 0 {
gamma := b1 / a1
// Change sign if necessary.
if gamma < 0 {
bi.Dscal(l-i, -1, b[i*ldb+n-l+i:], 1)
if wantv {
bi.Dscal(p, -1, v[i:], ldv)
}
}
beta[k+i], alpha[k+i], _ = impl.Dlartg(math.Abs(gamma), 1)
if alpha[k+i] >= beta[k+i] {
bi.Dscal(l-i, 1/alpha[k+i], a[(k+i)*lda+n-l+i:], 1)
} else {
bi.Dscal(l-i, 1/beta[k+i], b[i*ldb+n-l+i:], 1)
bi.Dcopy(l-i, b[i*ldb+n-l+i:], 1, a[(k+i)*lda+n-l+i:], 1)
}
} else {
alpha[k+i] = 0
beta[k+i] = 1
bi.Dcopy(l-i, b[i*ldb+n-l+i:], 1, a[(k+i)*lda+n-l+i:], 1)
}
}
for i := m; i < k+l; i++ {
alpha[i] = 0
beta[i] = 1
}
if k+l < n {
for i := k + l; i < n; i++ {
alpha[i] = 0
beta[i] = 0
}
}
return cycles, true
}
}
}
// The algorithm has not converged after maxit cycles.
return cycles, false
}