k3s/vendor/gonum.org/v1/gonum/lapack/gonum/dggsvd3.go

243 lines
6.2 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"math"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/lapack"
)
// Dggsvd3 computes the generalized singular value decomposition (GSVD)
// of an m×n matrix A and p×n matrix B:
// Uᵀ*A*Q = D1*[ 0 R ]
//
// Vᵀ*B*Q = D2*[ 0 R ]
// where U, V and Q are orthogonal matrices.
//
// Dggsvd3 returns k and l, the dimensions of the sub-blocks. k+l
// is the effective numerical rank of the (m+p)×n matrix [ Aᵀ Bᵀ ]ᵀ.
// R is a (k+l)×(k+l) nonsingular upper triangular matrix, D1 and
// D2 are m×(k+l) and p×(k+l) diagonal matrices and of the following
// structures, respectively:
//
// If m-k-l >= 0,
//
// k l
// D1 = k [ I 0 ]
// l [ 0 C ]
// m-k-l [ 0 0 ]
//
// k l
// D2 = l [ 0 S ]
// p-l [ 0 0 ]
//
// n-k-l k l
// [ 0 R ] = k [ 0 R11 R12 ] k
// l [ 0 0 R22 ] l
//
// where
//
// C = diag( alpha_k, ... , alpha_{k+l} ),
// S = diag( beta_k, ... , beta_{k+l} ),
// C^2 + S^2 = I.
//
// R is stored in
// A[0:k+l, n-k-l:n]
// on exit.
//
// If m-k-l < 0,
//
// k m-k k+l-m
// D1 = k [ I 0 0 ]
// m-k [ 0 C 0 ]
//
// k m-k k+l-m
// D2 = m-k [ 0 S 0 ]
// k+l-m [ 0 0 I ]
// p-l [ 0 0 0 ]
//
// n-k-l k m-k k+l-m
// [ 0 R ] = k [ 0 R11 R12 R13 ]
// m-k [ 0 0 R22 R23 ]
// k+l-m [ 0 0 0 R33 ]
//
// where
// C = diag( alpha_k, ... , alpha_m ),
// S = diag( beta_k, ... , beta_m ),
// C^2 + S^2 = I.
//
// R = [ R11 R12 R13 ] is stored in A[1:m, n-k-l+1:n]
// [ 0 R22 R23 ]
// and R33 is stored in
// B[m-k:l, n+m-k-l:n] on exit.
//
// Dggsvd3 computes C, S, R, and optionally the orthogonal transformation
// matrices U, V and Q.
//
// jobU, jobV and jobQ are options for computing the orthogonal matrices. The behavior
// is as follows
// jobU == lapack.GSVDU Compute orthogonal matrix U
// jobU == lapack.GSVDNone Do not compute orthogonal matrix.
// The behavior is the same for jobV and jobQ with the exception that instead of
// lapack.GSVDU these accept lapack.GSVDV and lapack.GSVDQ respectively.
// The matrices U, V and Q must be m×m, p×p and n×n respectively unless the
// relevant job parameter is lapack.GSVDNone.
//
// alpha and beta must have length n or Dggsvd3 will panic. On exit, alpha and
// beta contain the generalized singular value pairs of A and B
// alpha[0:k] = 1,
// beta[0:k] = 0,
// if m-k-l >= 0,
// alpha[k:k+l] = diag(C),
// beta[k:k+l] = diag(S),
// if m-k-l < 0,
// alpha[k:m]= C, alpha[m:k+l]= 0
// beta[k:m] = S, beta[m:k+l] = 1.
// if k+l < n,
// alpha[k+l:n] = 0 and
// beta[k+l:n] = 0.
//
// On exit, iwork contains the permutation required to sort alpha descending.
//
// iwork must have length n, work must have length at least max(1, lwork), and
// lwork must be -1 or greater than n, otherwise Dggsvd3 will panic. If
// lwork is -1, work[0] holds the optimal lwork on return, but Dggsvd3 does
// not perform the GSVD.
func (impl Implementation) Dggsvd3(jobU, jobV, jobQ lapack.GSVDJob, m, n, p int, a []float64, lda int, b []float64, ldb int, alpha, beta, u []float64, ldu int, v []float64, ldv int, q []float64, ldq int, work []float64, lwork int, iwork []int) (k, l int, ok bool) {
wantu := jobU == lapack.GSVDU
wantv := jobV == lapack.GSVDV
wantq := jobQ == lapack.GSVDQ
switch {
case !wantu && jobU != lapack.GSVDNone:
panic(badGSVDJob + "U")
case !wantv && jobV != lapack.GSVDNone:
panic(badGSVDJob + "V")
case !wantq && jobQ != lapack.GSVDNone:
panic(badGSVDJob + "Q")
case m < 0:
panic(mLT0)
case n < 0:
panic(nLT0)
case p < 0:
panic(pLT0)
case lda < max(1, n):
panic(badLdA)
case ldb < max(1, n):
panic(badLdB)
case ldu < 1, wantu && ldu < m:
panic(badLdU)
case ldv < 1, wantv && ldv < p:
panic(badLdV)
case ldq < 1, wantq && ldq < n:
panic(badLdQ)
case len(iwork) < n:
panic(shortWork)
case lwork < 1 && lwork != -1:
panic(badLWork)
case len(work) < max(1, lwork):
panic(shortWork)
}
// Determine optimal work length.
impl.Dggsvp3(jobU, jobV, jobQ,
m, p, n,
a, lda,
b, ldb,
0, 0,
u, ldu,
v, ldv,
q, ldq,
iwork,
work, work, -1)
lwkopt := n + int(work[0])
lwkopt = max(lwkopt, 2*n)
lwkopt = max(lwkopt, 1)
work[0] = float64(lwkopt)
if lwork == -1 {
return 0, 0, true
}
switch {
case len(a) < (m-1)*lda+n:
panic(shortA)
case len(b) < (p-1)*ldb+n:
panic(shortB)
case wantu && len(u) < (m-1)*ldu+m:
panic(shortU)
case wantv && len(v) < (p-1)*ldv+p:
panic(shortV)
case wantq && len(q) < (n-1)*ldq+n:
panic(shortQ)
case len(alpha) != n:
panic(badLenAlpha)
case len(beta) != n:
panic(badLenBeta)
}
// Compute the Frobenius norm of matrices A and B.
anorm := impl.Dlange(lapack.Frobenius, m, n, a, lda, nil)
bnorm := impl.Dlange(lapack.Frobenius, p, n, b, ldb, nil)
// Get machine precision and set up threshold for determining
// the effective numerical rank of the matrices A and B.
tola := float64(max(m, n)) * math.Max(anorm, dlamchS) * dlamchP
tolb := float64(max(p, n)) * math.Max(bnorm, dlamchS) * dlamchP
// Preprocessing.
k, l = impl.Dggsvp3(jobU, jobV, jobQ,
m, p, n,
a, lda,
b, ldb,
tola, tolb,
u, ldu,
v, ldv,
q, ldq,
iwork,
work[:n], work[n:], lwork-n)
// Compute the GSVD of two upper "triangular" matrices.
_, ok = impl.Dtgsja(jobU, jobV, jobQ,
m, p, n,
k, l,
a, lda,
b, ldb,
tola, tolb,
alpha, beta,
u, ldu,
v, ldv,
q, ldq,
work)
// Sort the singular values and store the pivot indices in iwork
// Copy alpha to work, then sort alpha in work.
bi := blas64.Implementation()
bi.Dcopy(n, alpha, 1, work[:n], 1)
ibnd := min(l, m-k)
for i := 0; i < ibnd; i++ {
// Scan for largest alpha_{k+i}.
isub := i
smax := work[k+i]
for j := i + 1; j < ibnd; j++ {
if v := work[k+j]; v > smax {
isub = j
smax = v
}
}
if isub != i {
work[k+isub] = work[k+i]
work[k+i] = smax
iwork[k+i] = k + isub
} else {
iwork[k+i] = k + i
}
}
work[0] = float64(lwkopt)
return k, l, ok
}