/* Copyright 2015 The Kubernetes Authors. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package cache import ( "fmt" "sync" "time" "k8s.io/apimachinery/pkg/runtime" "k8s.io/apimachinery/pkg/util/clock" utilruntime "k8s.io/apimachinery/pkg/util/runtime" "k8s.io/apimachinery/pkg/util/wait" "k8s.io/client-go/util/retry" "k8s.io/utils/buffer" "k8s.io/klog" ) // SharedInformer provides eventually consistent linkage of its // clients to the authoritative state of a given collection of // objects. An object is identified by its API group, kind/resource, // namespace, and name; the `ObjectMeta.UID` is not part of an // object's ID as far as this contract is concerned. One // SharedInformer provides linkage to objects of a particular API // group and kind/resource. The linked object collection of a // SharedInformer may be further restricted to one namespace and/or by // label selector and/or field selector. // // The authoritative state of an object is what apiservers provide // access to, and an object goes through a strict sequence of states. // An object state is either "absent" or present with a // ResourceVersion and other appropriate content. // // A SharedInformer gets object states from apiservers using a // sequence of LIST and WATCH operations. Through this sequence the // apiservers provide a sequence of "collection states" to the // informer, where each collection state defines the state of every // object of the collection. No promise --- beyond what is implied by // other remarks here --- is made about how one informer's sequence of // collection states relates to a different informer's sequence of // collection states. // // A SharedInformer maintains a local cache, exposed by GetStore() and // by GetIndexer() in the case of an indexed informer, of the state of // each relevant object. This cache is eventually consistent with the // authoritative state. This means that, unless prevented by // persistent communication problems, if ever a particular object ID X // is authoritatively associated with a state S then for every // SharedInformer I whose collection includes (X, S) eventually either // (1) I's cache associates X with S or a later state of X, (2) I is // stopped, or (3) the authoritative state service for X terminates. // To be formally complete, we say that the absent state meets any // restriction by label selector or field selector. // // The local cache starts out empty, and gets populated and updated // during `Run()`. // // As a simple example, if a collection of objects is henceforeth // unchanging, a SharedInformer is created that links to that // collection, and that SharedInformer is `Run()` then that // SharedInformer's cache eventually holds an exact copy of that // collection (unless it is stopped too soon, the authoritative state // service ends, or communication problems between the two // persistently thwart achievement). // // As another simple example, if the local cache ever holds a // non-absent state for some object ID and the object is eventually // removed from the authoritative state then eventually the object is // removed from the local cache (unless the SharedInformer is stopped // too soon, the authoritative state service ends, or communication // problems persistently thwart the desired result). // // The keys in the Store are of the form namespace/name for namespaced // objects, and are simply the name for non-namespaced objects. // Clients can use `MetaNamespaceKeyFunc(obj)` to extract the key for // a given object, and `SplitMetaNamespaceKey(key)` to split a key // into its constituent parts. // // A client is identified here by a ResourceEventHandler. For every // update to the SharedInformer's local cache and for every client // added before `Run()`, eventually either the SharedInformer is // stopped or the client is notified of the update. A client added // after `Run()` starts gets a startup batch of notifications of // additions of the object existing in the cache at the time that // client was added; also, for every update to the SharedInformer's // local cache after that client was added, eventually either the // SharedInformer is stopped or that client is notified of that // update. Client notifications happen after the corresponding cache // update and, in the case of a SharedIndexInformer, after the // corresponding index updates. It is possible that additional cache // and index updates happen before such a prescribed notification. // For a given SharedInformer and client, the notifications are // delivered sequentially. For a given SharedInformer, client, and // object ID, the notifications are delivered in order. // // A client must process each notification promptly; a SharedInformer // is not engineered to deal well with a large backlog of // notifications to deliver. Lengthy processing should be passed off // to something else, for example through a // `client-go/util/workqueue`. // // Each query to an informer's local cache --- whether a single-object // lookup, a list operation, or a use of one of its indices --- is // answered entirely from one of the collection states received by // that informer. // // A delete notification exposes the last locally known non-absent // state, except that its ResourceVersion is replaced with a // ResourceVersion in which the object is actually absent. type SharedInformer interface { // AddEventHandler adds an event handler to the shared informer using the shared informer's resync // period. Events to a single handler are delivered sequentially, but there is no coordination // between different handlers. AddEventHandler(handler ResourceEventHandler) // AddEventHandlerWithResyncPeriod adds an event handler to the // shared informer using the specified resync period. The resync // operation consists of delivering to the handler a create // notification for every object in the informer's local cache; it // does not add any interactions with the authoritative storage. AddEventHandlerWithResyncPeriod(handler ResourceEventHandler, resyncPeriod time.Duration) // GetStore returns the informer's local cache as a Store. GetStore() Store // GetController gives back a synthetic interface that "votes" to start the informer GetController() Controller // Run starts and runs the shared informer, returning after it stops. // The informer will be stopped when stopCh is closed. Run(stopCh <-chan struct{}) // HasSynced returns true if the shared informer's store has been // informed by at least one full LIST of the authoritative state // of the informer's object collection. This is unrelated to "resync". HasSynced() bool // LastSyncResourceVersion is the resource version observed when last synced with the underlying // store. The value returned is not synchronized with access to the underlying store and is not // thread-safe. LastSyncResourceVersion() string } // SharedIndexInformer provides add and get Indexers ability based on SharedInformer. type SharedIndexInformer interface { SharedInformer // AddIndexers add indexers to the informer before it starts. AddIndexers(indexers Indexers) error GetIndexer() Indexer } // NewSharedInformer creates a new instance for the listwatcher. func NewSharedInformer(lw ListerWatcher, objType runtime.Object, resyncPeriod time.Duration) SharedInformer { return NewSharedIndexInformer(lw, objType, resyncPeriod, Indexers{}) } // NewSharedIndexInformer creates a new instance for the listwatcher. func NewSharedIndexInformer(lw ListerWatcher, objType runtime.Object, defaultEventHandlerResyncPeriod time.Duration, indexers Indexers) SharedIndexInformer { realClock := &clock.RealClock{} sharedIndexInformer := &sharedIndexInformer{ processor: &sharedProcessor{clock: realClock}, indexer: NewIndexer(DeletionHandlingMetaNamespaceKeyFunc, indexers), listerWatcher: lw, objectType: objType, resyncCheckPeriod: defaultEventHandlerResyncPeriod, defaultEventHandlerResyncPeriod: defaultEventHandlerResyncPeriod, cacheMutationDetector: NewCacheMutationDetector(fmt.Sprintf("%T", objType)), clock: realClock, } return sharedIndexInformer } // InformerSynced is a function that can be used to determine if an informer has synced. This is useful for determining if caches have synced. type InformerSynced func() bool const ( // syncedPollPeriod controls how often you look at the status of your sync funcs syncedPollPeriod = 100 * time.Millisecond // initialBufferSize is the initial number of event notifications that can be buffered. initialBufferSize = 1024 ) // WaitForNamedCacheSync is a wrapper around WaitForCacheSync that generates log messages // indicating that the caller identified by name is waiting for syncs, followed by // either a successful or failed sync. func WaitForNamedCacheSync(controllerName string, stopCh <-chan struct{}, cacheSyncs ...InformerSynced) bool { klog.Infof("Waiting for caches to sync for %s", controllerName) if !WaitForCacheSync(stopCh, cacheSyncs...) { utilruntime.HandleError(fmt.Errorf("unable to sync caches for %s", controllerName)) return false } klog.Infof("Caches are synced for %s ", controllerName) return true } // WaitForCacheSync waits for caches to populate. It returns true if it was successful, false // if the controller should shutdown // callers should prefer WaitForNamedCacheSync() func WaitForCacheSync(stopCh <-chan struct{}, cacheSyncs ...InformerSynced) bool { err := wait.PollImmediateUntil(syncedPollPeriod, func() (bool, error) { for _, syncFunc := range cacheSyncs { if !syncFunc() { return false, nil } } return true, nil }, stopCh) if err != nil { klog.V(2).Infof("stop requested") return false } klog.V(4).Infof("caches populated") return true } type sharedIndexInformer struct { indexer Indexer controller Controller processor *sharedProcessor cacheMutationDetector MutationDetector // This block is tracked to handle late initialization of the controller listerWatcher ListerWatcher objectType runtime.Object // resyncCheckPeriod is how often we want the reflector's resync timer to fire so it can call // shouldResync to check if any of our listeners need a resync. resyncCheckPeriod time.Duration // defaultEventHandlerResyncPeriod is the default resync period for any handlers added via // AddEventHandler (i.e. they don't specify one and just want to use the shared informer's default // value). defaultEventHandlerResyncPeriod time.Duration // clock allows for testability clock clock.Clock started, stopped bool startedLock sync.Mutex // blockDeltas gives a way to stop all event distribution so that a late event handler // can safely join the shared informer. blockDeltas sync.Mutex } // dummyController hides the fact that a SharedInformer is different from a dedicated one // where a caller can `Run`. The run method is disconnected in this case, because higher // level logic will decide when to start the SharedInformer and related controller. // Because returning information back is always asynchronous, the legacy callers shouldn't // notice any change in behavior. type dummyController struct { informer *sharedIndexInformer } func (v *dummyController) Run(stopCh <-chan struct{}) { } func (v *dummyController) HasSynced() bool { return v.informer.HasSynced() } func (v *dummyController) LastSyncResourceVersion() string { return "" } type updateNotification struct { oldObj interface{} newObj interface{} } type addNotification struct { newObj interface{} } type deleteNotification struct { oldObj interface{} } func (s *sharedIndexInformer) Run(stopCh <-chan struct{}) { defer utilruntime.HandleCrash() fifo := NewDeltaFIFO(MetaNamespaceKeyFunc, s.indexer) cfg := &Config{ Queue: fifo, ListerWatcher: s.listerWatcher, ObjectType: s.objectType, FullResyncPeriod: s.resyncCheckPeriod, RetryOnError: false, ShouldResync: s.processor.shouldResync, Process: s.HandleDeltas, } func() { s.startedLock.Lock() defer s.startedLock.Unlock() s.controller = New(cfg) s.controller.(*controller).clock = s.clock s.started = true }() // Separate stop channel because Processor should be stopped strictly after controller processorStopCh := make(chan struct{}) var wg wait.Group defer wg.Wait() // Wait for Processor to stop defer close(processorStopCh) // Tell Processor to stop wg.StartWithChannel(processorStopCh, s.cacheMutationDetector.Run) wg.StartWithChannel(processorStopCh, s.processor.run) defer func() { s.startedLock.Lock() defer s.startedLock.Unlock() s.stopped = true // Don't want any new listeners }() s.controller.Run(stopCh) } func (s *sharedIndexInformer) HasSynced() bool { s.startedLock.Lock() defer s.startedLock.Unlock() if s.controller == nil { return false } return s.controller.HasSynced() } func (s *sharedIndexInformer) LastSyncResourceVersion() string { s.startedLock.Lock() defer s.startedLock.Unlock() if s.controller == nil { return "" } return s.controller.LastSyncResourceVersion() } func (s *sharedIndexInformer) GetStore() Store { return s.indexer } func (s *sharedIndexInformer) GetIndexer() Indexer { return s.indexer } func (s *sharedIndexInformer) AddIndexers(indexers Indexers) error { s.startedLock.Lock() defer s.startedLock.Unlock() if s.started { s.blockDeltas.Lock() defer s.blockDeltas.Unlock() } return s.indexer.AddIndexers(indexers) } func (s *sharedIndexInformer) GetController() Controller { return &dummyController{informer: s} } func (s *sharedIndexInformer) AddEventHandler(handler ResourceEventHandler) { s.AddEventHandlerWithResyncPeriod(handler, s.defaultEventHandlerResyncPeriod) } func determineResyncPeriod(desired, check time.Duration) time.Duration { if desired == 0 { return desired } if check == 0 { klog.Warningf("The specified resyncPeriod %v is invalid because this shared informer doesn't support resyncing", desired) return 0 } if desired < check { klog.Warningf("The specified resyncPeriod %v is being increased to the minimum resyncCheckPeriod %v", desired, check) return check } return desired } const minimumResyncPeriod = 1 * time.Second func (s *sharedIndexInformer) AddEventHandlerWithResyncPeriod(handler ResourceEventHandler, resyncPeriod time.Duration) { s.startedLock.Lock() defer s.startedLock.Unlock() if s.stopped { klog.V(2).Infof("Handler %v was not added to shared informer because it has stopped already", handler) return } if resyncPeriod > 0 { if resyncPeriod < minimumResyncPeriod { klog.Warningf("resyncPeriod %d is too small. Changing it to the minimum allowed value of %d", resyncPeriod, minimumResyncPeriod) resyncPeriod = minimumResyncPeriod } if resyncPeriod < s.resyncCheckPeriod { if s.started { klog.Warningf("resyncPeriod %d is smaller than resyncCheckPeriod %d and the informer has already started. Changing it to %d", resyncPeriod, s.resyncCheckPeriod, s.resyncCheckPeriod) resyncPeriod = s.resyncCheckPeriod } else { // if the event handler's resyncPeriod is smaller than the current resyncCheckPeriod, update // resyncCheckPeriod to match resyncPeriod and adjust the resync periods of all the listeners // accordingly s.resyncCheckPeriod = resyncPeriod s.processor.resyncCheckPeriodChanged(resyncPeriod) } } } listener := newProcessListener(handler, resyncPeriod, determineResyncPeriod(resyncPeriod, s.resyncCheckPeriod), s.clock.Now(), initialBufferSize) if !s.started { s.processor.addListener(listener) return } // in order to safely join, we have to // 1. stop sending add/update/delete notifications // 2. do a list against the store // 3. send synthetic "Add" events to the new handler // 4. unblock s.blockDeltas.Lock() defer s.blockDeltas.Unlock() s.processor.addListener(listener) for _, item := range s.indexer.List() { listener.add(addNotification{newObj: item}) } } func (s *sharedIndexInformer) HandleDeltas(obj interface{}) error { s.blockDeltas.Lock() defer s.blockDeltas.Unlock() // from oldest to newest for _, d := range obj.(Deltas) { switch d.Type { case Sync, Added, Updated: isSync := d.Type == Sync s.cacheMutationDetector.AddObject(d.Object) if old, exists, err := s.indexer.Get(d.Object); err == nil && exists { if err := s.indexer.Update(d.Object); err != nil { return err } s.processor.distribute(updateNotification{oldObj: old, newObj: d.Object}, isSync) } else { if err := s.indexer.Add(d.Object); err != nil { return err } s.processor.distribute(addNotification{newObj: d.Object}, isSync) } case Deleted: if err := s.indexer.Delete(d.Object); err != nil { return err } s.processor.distribute(deleteNotification{oldObj: d.Object}, false) } } return nil } type sharedProcessor struct { listenersStarted bool listenersLock sync.RWMutex listeners []*processorListener syncingListeners []*processorListener clock clock.Clock wg wait.Group } func (p *sharedProcessor) addListener(listener *processorListener) { p.listenersLock.Lock() defer p.listenersLock.Unlock() p.addListenerLocked(listener) if p.listenersStarted { p.wg.Start(listener.run) p.wg.Start(listener.pop) } } func (p *sharedProcessor) addListenerLocked(listener *processorListener) { p.listeners = append(p.listeners, listener) p.syncingListeners = append(p.syncingListeners, listener) } func (p *sharedProcessor) distribute(obj interface{}, sync bool) { p.listenersLock.RLock() defer p.listenersLock.RUnlock() if sync { for _, listener := range p.syncingListeners { listener.add(obj) } } else { for _, listener := range p.listeners { listener.add(obj) } } } func (p *sharedProcessor) run(stopCh <-chan struct{}) { func() { p.listenersLock.RLock() defer p.listenersLock.RUnlock() for _, listener := range p.listeners { p.wg.Start(listener.run) p.wg.Start(listener.pop) } p.listenersStarted = true }() <-stopCh p.listenersLock.RLock() defer p.listenersLock.RUnlock() for _, listener := range p.listeners { close(listener.addCh) // Tell .pop() to stop. .pop() will tell .run() to stop } p.wg.Wait() // Wait for all .pop() and .run() to stop } // shouldResync queries every listener to determine if any of them need a resync, based on each // listener's resyncPeriod. func (p *sharedProcessor) shouldResync() bool { p.listenersLock.Lock() defer p.listenersLock.Unlock() p.syncingListeners = []*processorListener{} resyncNeeded := false now := p.clock.Now() for _, listener := range p.listeners { // need to loop through all the listeners to see if they need to resync so we can prepare any // listeners that are going to be resyncing. if listener.shouldResync(now) { resyncNeeded = true p.syncingListeners = append(p.syncingListeners, listener) listener.determineNextResync(now) } } return resyncNeeded } func (p *sharedProcessor) resyncCheckPeriodChanged(resyncCheckPeriod time.Duration) { p.listenersLock.RLock() defer p.listenersLock.RUnlock() for _, listener := range p.listeners { resyncPeriod := determineResyncPeriod(listener.requestedResyncPeriod, resyncCheckPeriod) listener.setResyncPeriod(resyncPeriod) } } type processorListener struct { nextCh chan interface{} addCh chan interface{} handler ResourceEventHandler // pendingNotifications is an unbounded ring buffer that holds all notifications not yet distributed. // There is one per listener, but a failing/stalled listener will have infinite pendingNotifications // added until we OOM. // TODO: This is no worse than before, since reflectors were backed by unbounded DeltaFIFOs, but // we should try to do something better. pendingNotifications buffer.RingGrowing // requestedResyncPeriod is how frequently the listener wants a full resync from the shared informer requestedResyncPeriod time.Duration // resyncPeriod is how frequently the listener wants a full resync from the shared informer. This // value may differ from requestedResyncPeriod if the shared informer adjusts it to align with the // informer's overall resync check period. resyncPeriod time.Duration // nextResync is the earliest time the listener should get a full resync nextResync time.Time // resyncLock guards access to resyncPeriod and nextResync resyncLock sync.Mutex } func newProcessListener(handler ResourceEventHandler, requestedResyncPeriod, resyncPeriod time.Duration, now time.Time, bufferSize int) *processorListener { ret := &processorListener{ nextCh: make(chan interface{}), addCh: make(chan interface{}), handler: handler, pendingNotifications: *buffer.NewRingGrowing(bufferSize), requestedResyncPeriod: requestedResyncPeriod, resyncPeriod: resyncPeriod, } ret.determineNextResync(now) return ret } func (p *processorListener) add(notification interface{}) { p.addCh <- notification } func (p *processorListener) pop() { defer utilruntime.HandleCrash() defer close(p.nextCh) // Tell .run() to stop var nextCh chan<- interface{} var notification interface{} for { select { case nextCh <- notification: // Notification dispatched var ok bool notification, ok = p.pendingNotifications.ReadOne() if !ok { // Nothing to pop nextCh = nil // Disable this select case } case notificationToAdd, ok := <-p.addCh: if !ok { return } if notification == nil { // No notification to pop (and pendingNotifications is empty) // Optimize the case - skip adding to pendingNotifications notification = notificationToAdd nextCh = p.nextCh } else { // There is already a notification waiting to be dispatched p.pendingNotifications.WriteOne(notificationToAdd) } } } } func (p *processorListener) run() { // this call blocks until the channel is closed. When a panic happens during the notification // we will catch it, **the offending item will be skipped!**, and after a short delay (one second) // the next notification will be attempted. This is usually better than the alternative of never // delivering again. stopCh := make(chan struct{}) wait.Until(func() { // this gives us a few quick retries before a long pause and then a few more quick retries err := wait.ExponentialBackoff(retry.DefaultRetry, func() (bool, error) { for next := range p.nextCh { switch notification := next.(type) { case updateNotification: p.handler.OnUpdate(notification.oldObj, notification.newObj) case addNotification: p.handler.OnAdd(notification.newObj) case deleteNotification: p.handler.OnDelete(notification.oldObj) default: utilruntime.HandleError(fmt.Errorf("unrecognized notification: %T", next)) } } // the only way to get here is if the p.nextCh is empty and closed return true, nil }) // the only way to get here is if the p.nextCh is empty and closed if err == nil { close(stopCh) } }, 1*time.Minute, stopCh) } // shouldResync deterimines if the listener needs a resync. If the listener's resyncPeriod is 0, // this always returns false. func (p *processorListener) shouldResync(now time.Time) bool { p.resyncLock.Lock() defer p.resyncLock.Unlock() if p.resyncPeriod == 0 { return false } return now.After(p.nextResync) || now.Equal(p.nextResync) } func (p *processorListener) determineNextResync(now time.Time) { p.resyncLock.Lock() defer p.resyncLock.Unlock() p.nextResync = now.Add(p.resyncPeriod) } func (p *processorListener) setResyncPeriod(resyncPeriod time.Duration) { p.resyncLock.Lock() defer p.resyncLock.Unlock() p.resyncPeriod = resyncPeriod }