/* Copyright 2015 The Kubernetes Authors All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package e2e import ( "fmt" "math" "os" "sort" "strconv" "sync" "time" "k8s.io/kubernetes/pkg/api" "k8s.io/kubernetes/pkg/api/resource" "k8s.io/kubernetes/pkg/api/unversioned" "k8s.io/kubernetes/pkg/client/cache" client "k8s.io/kubernetes/pkg/client/unversioned" controllerframework "k8s.io/kubernetes/pkg/controller/framework" "k8s.io/kubernetes/pkg/fields" "k8s.io/kubernetes/pkg/labels" "k8s.io/kubernetes/pkg/runtime" "k8s.io/kubernetes/pkg/util" "k8s.io/kubernetes/pkg/watch" "k8s.io/kubernetes/test/e2e/framework" . "github.com/onsi/ginkgo" . "github.com/onsi/gomega" ) const ( MinSaturationThreshold = 2 * time.Minute MinPodsPerSecondThroughput = 8 ) // Maximum container failures this test tolerates before failing. var MaxContainerFailures = 0 func density30AddonResourceVerifier() map[string]framework.ResourceConstraint { constraints := make(map[string]framework.ResourceConstraint) constraints["fluentd-elasticsearch"] = framework.ResourceConstraint{ CPUConstraint: 0.1, MemoryConstraint: 250 * (1024 * 1024), } constraints["elasticsearch-logging"] = framework.ResourceConstraint{ CPUConstraint: 2, // TODO: bring it down to 750MB again, when we lower Kubelet verbosity level. I.e. revert #19164 MemoryConstraint: 5000 * (1024 * 1024), } constraints["heapster"] = framework.ResourceConstraint{ CPUConstraint: 2, MemoryConstraint: 1800 * (1024 * 1024), } constraints["kibana-logging"] = framework.ResourceConstraint{ CPUConstraint: 0.2, MemoryConstraint: 100 * (1024 * 1024), } constraints["kube-proxy"] = framework.ResourceConstraint{ CPUConstraint: 0.05, MemoryConstraint: 20 * (1024 * 1024), } constraints["l7-lb-controller"] = framework.ResourceConstraint{ CPUConstraint: 0.05, MemoryConstraint: 20 * (1024 * 1024), } constraints["influxdb"] = framework.ResourceConstraint{ CPUConstraint: 2, MemoryConstraint: 500 * (1024 * 1024), } return constraints } func logPodStartupStatus(c *client.Client, expectedPods int, ns string, observedLabels map[string]string, period time.Duration, stopCh chan struct{}) { label := labels.SelectorFromSet(labels.Set(observedLabels)) podStore := framework.NewPodStore(c, ns, label, fields.Everything()) defer podStore.Stop() ticker := time.NewTicker(period) for { select { case <-ticker.C: pods := podStore.List() startupStatus := framework.ComputeRCStartupStatus(pods, expectedPods) startupStatus.Print("Density") case <-stopCh: pods := podStore.List() startupStatus := framework.ComputeRCStartupStatus(pods, expectedPods) startupStatus.Print("Density") return } } } // This test suite can take a long time to run, and can affect or be affected by other tests. // So by default it is added to the ginkgo.skip list (see driver.go). // To run this suite you must explicitly ask for it by setting the // -t/--test flag or ginkgo.focus flag. // IMPORTANT: This test is designed to work on large (>= 100 Nodes) clusters. For smaller ones // results will not be representative for control-plane performance as we'll start hitting // limits on Docker's concurrent container startup. var _ = framework.KubeDescribe("Density", func() { var c *client.Client var nodeCount int var RCName string var additionalPodsPrefix string var ns string var uuid string var e2eStartupTime time.Duration var totalPods int var nodeCpuCapacity int64 var nodeMemCapacity int64 // Gathers data prior to framework namespace teardown AfterEach(func() { saturationThreshold := time.Duration((totalPods / MinPodsPerSecondThroughput)) * time.Second if saturationThreshold < MinSaturationThreshold { saturationThreshold = MinSaturationThreshold } Expect(e2eStartupTime).NotTo(BeNumerically(">", saturationThreshold)) saturationData := framework.SaturationTime{ TimeToSaturate: e2eStartupTime, NumberOfNodes: nodeCount, NumberOfPods: totalPods, Throughput: float32(totalPods) / float32(e2eStartupTime/time.Second), } framework.Logf("Cluster saturation time: %s", framework.PrettyPrintJSON(saturationData)) // Verify latency metrics. highLatencyRequests, err := framework.HighLatencyRequests(c) framework.ExpectNoError(err) Expect(highLatencyRequests).NotTo(BeNumerically(">", 0), "There should be no high-latency requests") // Verify scheduler metrics. // TODO: Reset metrics at the beginning of the test. // We should do something similar to how we do it for APIserver. framework.ExpectNoError(framework.VerifySchedulerLatency(c)) }) // Explicitly put here, to delete namespace at the end of the test // (after measuring latency metrics, etc.). f := framework.NewDefaultFramework("density") f.NamespaceDeletionTimeout = time.Hour BeforeEach(func() { c = f.Client ns = f.Namespace.Name nodes := framework.ListSchedulableNodesOrDie(c) nodeCount = len(nodes.Items) Expect(nodeCount).NotTo(BeZero()) nodeCpuCapacity = nodes.Items[0].Status.Allocatable.Cpu().MilliValue() nodeMemCapacity = nodes.Items[0].Status.Allocatable.Memory().Value() // Terminating a namespace (deleting the remaining objects from it - which // generally means events) can affect the current run. Thus we wait for all // terminating namespace to be finally deleted before starting this test. err := framework.CheckTestingNSDeletedExcept(c, ns) framework.ExpectNoError(err) uuid = string(util.NewUUID()) framework.ExpectNoError(framework.ResetMetrics(c)) framework.ExpectNoError(os.Mkdir(fmt.Sprintf(framework.TestContext.OutputDir+"/%s", uuid), 0777)) framework.Logf("Listing nodes for easy debugging:\n") for _, node := range nodes.Items { var internalIP, externalIP string for _, address := range node.Status.Addresses { if address.Type == api.NodeInternalIP { internalIP = address.Address } if address.Type == api.NodeExternalIP { externalIP = address.Address } } framework.Logf("Name: %v, clusterIP: %v, externalIP: %v", node.ObjectMeta.Name, internalIP, externalIP) } }) type Density struct { // Controls if e2e latency tests should be run (they are slow) runLatencyTest bool podsPerNode int // Controls how often the apiserver is polled for pods interval time.Duration } densityTests := []Density{ // TODO: Expose runLatencyTest as ginkgo flag. {podsPerNode: 3, runLatencyTest: false, interval: 10 * time.Second}, {podsPerNode: 30, runLatencyTest: true, interval: 10 * time.Second}, {podsPerNode: 50, runLatencyTest: false, interval: 10 * time.Second}, {podsPerNode: 95, runLatencyTest: true, interval: 10 * time.Second}, {podsPerNode: 100, runLatencyTest: false, interval: 10 * time.Second}, } for _, testArg := range densityTests { name := fmt.Sprintf("should allow starting %d pods per node", testArg.podsPerNode) switch testArg.podsPerNode { case 30: name = "[Feature:Performance] " + name f.AddonResourceConstraints = density30AddonResourceVerifier() case 95: name = "[Feature:HighDensityPerformance]" + name default: name = "[Feature:ManualPerformance] " + name } itArg := testArg It(name, func() { fileHndl, err := os.Create(fmt.Sprintf(framework.TestContext.OutputDir+"/%s/pod_states.csv", uuid)) framework.ExpectNoError(err) defer fileHndl.Close() podsPerNode := itArg.podsPerNode totalPods = podsPerNode * nodeCount // TODO: loop to podsPerNode instead of 1 when we're ready. numberOrRCs := 1 RCConfigs := make([]framework.RCConfig, numberOrRCs) for i := 0; i < numberOrRCs; i++ { RCName = "density" + strconv.Itoa(totalPods) + "-" + strconv.Itoa(i) + "-" + uuid RCConfigs[i] = framework.RCConfig{Client: c, Image: "gcr.io/google_containers/pause-amd64:3.0", Name: RCName, Namespace: ns, Labels: map[string]string{"type": "densityPod"}, PollInterval: itArg.interval, PodStatusFile: fileHndl, Replicas: (totalPods + numberOrRCs - 1) / numberOrRCs, CpuRequest: nodeCpuCapacity / 100, MemRequest: nodeMemCapacity / 100, MaxContainerFailures: &MaxContainerFailures, Silent: true, } } // Create a listener for events. // eLock is a lock protects the events var eLock sync.Mutex events := make([](*api.Event), 0) _, controller := controllerframework.NewInformer( &cache.ListWatch{ ListFunc: func(options api.ListOptions) (runtime.Object, error) { return c.Events(ns).List(options) }, WatchFunc: func(options api.ListOptions) (watch.Interface, error) { return c.Events(ns).Watch(options) }, }, &api.Event{}, 0, controllerframework.ResourceEventHandlerFuncs{ AddFunc: func(obj interface{}) { eLock.Lock() defer eLock.Unlock() events = append(events, obj.(*api.Event)) }, }, ) stop := make(chan struct{}) go controller.Run(stop) // Create a listener for api updates // uLock is a lock protects the updateCount var uLock sync.Mutex updateCount := 0 label := labels.SelectorFromSet(labels.Set(map[string]string{"type": "densityPod"})) _, updateController := controllerframework.NewInformer( &cache.ListWatch{ ListFunc: func(options api.ListOptions) (runtime.Object, error) { options.LabelSelector = label return c.Pods(ns).List(options) }, WatchFunc: func(options api.ListOptions) (watch.Interface, error) { options.LabelSelector = label return c.Pods(ns).Watch(options) }, }, &api.Pod{}, 0, controllerframework.ResourceEventHandlerFuncs{ UpdateFunc: func(_, _ interface{}) { uLock.Lock() defer uLock.Unlock() updateCount++ }, }, ) go updateController.Run(stop) // Start all replication controllers. startTime := time.Now() wg := sync.WaitGroup{} wg.Add(len(RCConfigs)) for i := range RCConfigs { rcConfig := RCConfigs[i] go func() { framework.ExpectNoError(framework.RunRC(rcConfig)) wg.Done() }() } logStopCh := make(chan struct{}) go logPodStartupStatus(c, totalPods, ns, map[string]string{"type": "densityPod"}, itArg.interval, logStopCh) wg.Wait() e2eStartupTime = time.Now().Sub(startTime) close(logStopCh) framework.Logf("E2E startup time for %d pods: %v", totalPods, e2eStartupTime) framework.Logf("Throughput (pods/s) during cluster saturation phase: %v", float32(totalPods)/float32(e2eStartupTime/time.Second)) By("Waiting for all events to be recorded") last := -1 current := len(events) lastCount := -1 currentCount := updateCount timeout := 10 * time.Minute for start := time.Now(); (last < current || lastCount < currentCount) && time.Since(start) < timeout; time.Sleep(10 * time.Second) { func() { eLock.Lock() defer eLock.Unlock() last = current current = len(events) }() func() { uLock.Lock() defer uLock.Unlock() lastCount = currentCount currentCount = updateCount }() } close(stop) if current != last { framework.Logf("Warning: Not all events were recorded after waiting %.2f minutes", timeout.Minutes()) } framework.Logf("Found %d events", current) if currentCount != lastCount { framework.Logf("Warning: Not all updates were recorded after waiting %.2f minutes", timeout.Minutes()) } framework.Logf("Found %d updates", currentCount) // Tune the threshold for allowed failures. badEvents := framework.BadEvents(events) Expect(badEvents).NotTo(BeNumerically(">", int(math.Floor(0.01*float64(totalPods))))) // Print some data about Pod to Node allocation By("Printing Pod to Node allocation data") podList, err := c.Pods(api.NamespaceAll).List(api.ListOptions{}) framework.ExpectNoError(err) pausePodAllocation := make(map[string]int) systemPodAllocation := make(map[string][]string) for _, pod := range podList.Items { if pod.Namespace == api.NamespaceSystem { systemPodAllocation[pod.Spec.NodeName] = append(systemPodAllocation[pod.Spec.NodeName], pod.Name) } else { pausePodAllocation[pod.Spec.NodeName]++ } } nodeNames := make([]string, 0) for k := range pausePodAllocation { nodeNames = append(nodeNames, k) } sort.Strings(nodeNames) for _, node := range nodeNames { framework.Logf("%v: %v pause pods, system pods: %v", node, pausePodAllocation[node], systemPodAllocation[node]) } if itArg.runLatencyTest { By("Scheduling additional Pods to measure startup latencies") createTimes := make(map[string]unversioned.Time, 0) nodes := make(map[string]string, 0) scheduleTimes := make(map[string]unversioned.Time, 0) runTimes := make(map[string]unversioned.Time, 0) watchTimes := make(map[string]unversioned.Time, 0) var mutex sync.Mutex checkPod := func(p *api.Pod) { mutex.Lock() defer mutex.Unlock() defer GinkgoRecover() if p.Status.Phase == api.PodRunning { if _, found := watchTimes[p.Name]; !found { watchTimes[p.Name] = unversioned.Now() createTimes[p.Name] = p.CreationTimestamp nodes[p.Name] = p.Spec.NodeName var startTime unversioned.Time for _, cs := range p.Status.ContainerStatuses { if cs.State.Running != nil { if startTime.Before(cs.State.Running.StartedAt) { startTime = cs.State.Running.StartedAt } } } if startTime != unversioned.NewTime(time.Time{}) { runTimes[p.Name] = startTime } else { framework.Failf("Pod %v is reported to be running, but none of its containers is", p.Name) } } } } additionalPodsPrefix = "density-latency-pod" latencyPodsStore, controller := controllerframework.NewInformer( &cache.ListWatch{ ListFunc: func(options api.ListOptions) (runtime.Object, error) { options.LabelSelector = labels.SelectorFromSet(labels.Set{"type": additionalPodsPrefix}) return c.Pods(ns).List(options) }, WatchFunc: func(options api.ListOptions) (watch.Interface, error) { options.LabelSelector = labels.SelectorFromSet(labels.Set{"type": additionalPodsPrefix}) return c.Pods(ns).Watch(options) }, }, &api.Pod{}, 0, controllerframework.ResourceEventHandlerFuncs{ AddFunc: func(obj interface{}) { p, ok := obj.(*api.Pod) Expect(ok).To(Equal(true)) go checkPod(p) }, UpdateFunc: func(oldObj, newObj interface{}) { p, ok := newObj.(*api.Pod) Expect(ok).To(Equal(true)) go checkPod(p) }, }, ) stopCh := make(chan struct{}) go controller.Run(stopCh) // Create some additional pods with throughput ~5 pods/sec. var wg sync.WaitGroup wg.Add(nodeCount) // Explicitly set requests here. // Thanks to it we trigger increasing priority function by scheduling // a pod to a node, which in turn will result in spreading latency pods // more evenly between nodes. cpuRequest := *resource.NewMilliQuantity(nodeCpuCapacity/5, resource.DecimalSI) memRequest := *resource.NewQuantity(nodeMemCapacity/5, resource.DecimalSI) if podsPerNode > 30 { // This is to make them schedulable on high-density tests // (e.g. 100 pods/node kubemark). cpuRequest = *resource.NewMilliQuantity(0, resource.DecimalSI) memRequest = *resource.NewQuantity(0, resource.DecimalSI) } for i := 1; i <= nodeCount; i++ { name := additionalPodsPrefix + "-" + strconv.Itoa(i) go createRunningPodFromRC(&wg, c, name, ns, "gcr.io/google_containers/pause-amd64:3.0", additionalPodsPrefix, cpuRequest, memRequest) time.Sleep(200 * time.Millisecond) } wg.Wait() By("Waiting for all Pods begin observed by the watch...") for start := time.Now(); len(watchTimes) < nodeCount; time.Sleep(10 * time.Second) { if time.Since(start) < timeout { framework.Failf("Timeout reached waiting for all Pods being observed by the watch.") } } close(stopCh) nodeToLatencyPods := make(map[string]int) for _, item := range latencyPodsStore.List() { pod := item.(*api.Pod) nodeToLatencyPods[pod.Spec.NodeName]++ } for node, count := range nodeToLatencyPods { if count > 1 { framework.Logf("%d latency pods scheduled on %s", count, node) } } selector := fields.Set{ "involvedObject.kind": "Pod", "involvedObject.namespace": ns, "source": api.DefaultSchedulerName, }.AsSelector() options := api.ListOptions{FieldSelector: selector} schedEvents, err := c.Events(ns).List(options) framework.ExpectNoError(err) for k := range createTimes { for _, event := range schedEvents.Items { if event.InvolvedObject.Name == k { scheduleTimes[k] = event.FirstTimestamp break } } } scheduleLag := make([]framework.PodLatencyData, 0) startupLag := make([]framework.PodLatencyData, 0) watchLag := make([]framework.PodLatencyData, 0) schedToWatchLag := make([]framework.PodLatencyData, 0) e2eLag := make([]framework.PodLatencyData, 0) for name, create := range createTimes { sched, ok := scheduleTimes[name] Expect(ok).To(Equal(true)) run, ok := runTimes[name] Expect(ok).To(Equal(true)) watch, ok := watchTimes[name] Expect(ok).To(Equal(true)) node, ok := nodes[name] Expect(ok).To(Equal(true)) scheduleLag = append(scheduleLag, framework.PodLatencyData{Name: name, Node: node, Latency: sched.Time.Sub(create.Time)}) startupLag = append(startupLag, framework.PodLatencyData{Name: name, Node: node, Latency: run.Time.Sub(sched.Time)}) watchLag = append(watchLag, framework.PodLatencyData{Name: name, Node: node, Latency: watch.Time.Sub(run.Time)}) schedToWatchLag = append(schedToWatchLag, framework.PodLatencyData{Name: name, Node: node, Latency: watch.Time.Sub(sched.Time)}) e2eLag = append(e2eLag, framework.PodLatencyData{Name: name, Node: node, Latency: watch.Time.Sub(create.Time)}) } sort.Sort(framework.LatencySlice(scheduleLag)) sort.Sort(framework.LatencySlice(startupLag)) sort.Sort(framework.LatencySlice(watchLag)) sort.Sort(framework.LatencySlice(schedToWatchLag)) sort.Sort(framework.LatencySlice(e2eLag)) framework.PrintLatencies(scheduleLag, "worst schedule latencies") framework.PrintLatencies(startupLag, "worst run-after-schedule latencies") framework.PrintLatencies(watchLag, "worst watch latencies") framework.PrintLatencies(schedToWatchLag, "worst scheduled-to-end total latencies") framework.PrintLatencies(e2eLag, "worst e2e total latencies") // Test whether e2e pod startup time is acceptable. podStartupLatency := framework.PodStartupLatency{Latency: framework.ExtractLatencyMetrics(e2eLag)} framework.ExpectNoError(framework.VerifyPodStartupLatency(podStartupLatency)) framework.LogSuspiciousLatency(startupLag, e2eLag, nodeCount, c) } By("Deleting ReplicationController") // We explicitly delete all pods to have API calls necessary for deletion accounted in metrics. for i := range RCConfigs { rcName := RCConfigs[i].Name rc, err := c.ReplicationControllers(ns).Get(rcName) if err == nil && rc.Spec.Replicas != 0 { By("Cleaning up the replication controller") err := framework.DeleteRC(c, ns, rcName) framework.ExpectNoError(err) } } By("Removing additional replication controllers if any") for i := 1; i <= nodeCount; i++ { name := additionalPodsPrefix + "-" + strconv.Itoa(i) c.ReplicationControllers(ns).Delete(name) } }) } }) func createRunningPodFromRC(wg *sync.WaitGroup, c *client.Client, name, ns, image, podType string, cpuRequest, memRequest resource.Quantity) { defer GinkgoRecover() defer wg.Done() labels := map[string]string{ "type": podType, "name": name, } rc := &api.ReplicationController{ ObjectMeta: api.ObjectMeta{ Name: name, Labels: labels, }, Spec: api.ReplicationControllerSpec{ Replicas: 1, Selector: labels, Template: &api.PodTemplateSpec{ ObjectMeta: api.ObjectMeta{ Labels: labels, }, Spec: api.PodSpec{ Containers: []api.Container{ { Name: name, Image: image, Resources: api.ResourceRequirements{ Requests: api.ResourceList{ api.ResourceCPU: cpuRequest, api.ResourceMemory: memRequest, }, }, }, }, DNSPolicy: api.DNSDefault, }, }, }, } _, err := c.ReplicationControllers(ns).Create(rc) framework.ExpectNoError(err) framework.ExpectNoError(framework.WaitForRCPodsRunning(c, ns, name)) framework.Logf("Found pod '%s' running", name) }