/* Copyright 2014 Google Inc. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package labels import ( "bytes" "fmt" "sort" "strings" "github.com/GoogleCloudPlatform/kubernetes/pkg/util" "github.com/GoogleCloudPlatform/kubernetes/pkg/util/fielderrors" ) // Selector represents a label selector. type Selector interface { // Matches returns true if this selector matches the given set of labels. Matches(Labels) bool // Empty returns true if this selector does not restrict the selection space. Empty() bool // String returns a human readable string that represents this selector. String() string // Add add a specific requirement for the selector Add(key string, operator Operator, values []string) Selector } // Everything returns a selector that matches all labels. func Everything() Selector { return LabelSelector{} } // Operator represents a key's relationship // to a set of values in a Requirement. type Operator string const ( EqualsOperator Operator = "=" DoubleEqualsOperator Operator = "==" InOperator Operator = "in" NotEqualsOperator Operator = "!=" NotInOperator Operator = "notin" ExistsOperator Operator = "exists" ) //LabelSelector is a list of Requirements. type LabelSelector []Requirement // Sort by obtain determisitic parser type ByKey []Requirement func (a ByKey) Len() int { return len(a) } func (a ByKey) Swap(i, j int) { a[i], a[j] = a[j], a[i] } func (a ByKey) Less(i, j int) bool { return a[i].key < a[j].key } // Requirement is a selector that contains values, a key // and an operator that relates the key and values. The zero // value of Requirement is invalid. // Requirement implements both set based match and exact match // Requirement is initialized via NewRequirement constructor for creating a valid Requirement. type Requirement struct { key string operator Operator strValues util.StringSet } // NewRequirement is the constructor for a Requirement. // If any of these rules is violated, an error is returned: // (1) The operator can only be In, NotIn or Exists. // (2) If the operator is In or NotIn, the values set must // be non-empty. // (3) The key is invalid due to its length, or sequence // of characters. See validateLabelKey for more details. // // The empty string is a valid value in the input values set. func NewRequirement(key string, op Operator, vals util.StringSet) (*Requirement, error) { if err := validateLabelKey(key); err != nil { return nil, err } switch op { case InOperator, NotInOperator: if len(vals) == 0 { return nil, fmt.Errorf("for 'in', 'notin' operators, values set can't be empty") } case EqualsOperator, DoubleEqualsOperator, NotEqualsOperator: if len(vals) != 1 { return nil, fmt.Errorf("exact match compatibility requires one single value") } case ExistsOperator: default: return nil, fmt.Errorf("operator '%v' is not recognized", op) } for v := range vals { if err := validateLabelValue(v); err != nil { return nil, err } } return &Requirement{key: key, operator: op, strValues: vals}, nil } // Matches returns true if the Requirement matches the input Labels. // There is a match in the following cases: // (1) The operator is Exists and Labels has the Requirement's key. // (2) The operator is In, Labels has the Requirement's key and Labels' // value for that key is in Requirement's value set. // (3) The operator is NotIn, Labels has the Requirement's key and // Labels' value for that key is not in Requirement's value set. // (4) The operator is NotIn and Labels does not have the // Requirement's key. func (r *Requirement) Matches(ls Labels) bool { switch r.operator { case InOperator, EqualsOperator, DoubleEqualsOperator: if !ls.Has(r.key) { return false } return r.strValues.Has(ls.Get(r.key)) case NotInOperator, NotEqualsOperator: if !ls.Has(r.key) { return true } return !r.strValues.Has(ls.Get(r.key)) case ExistsOperator: return ls.Has(r.key) default: return false } } // Return true if the LabelSelector doesn't restrict selection space func (lsel LabelSelector) Empty() bool { if lsel == nil { return true } return len(lsel) == 0 } // String returns a human-readable string that represents this // Requirement. If called on an invalid Requirement, an error is // returned. See NewRequirement for creating a valid Requirement. func (r *Requirement) String() string { var buffer bytes.Buffer buffer.WriteString(r.key) switch r.operator { case EqualsOperator: buffer.WriteString("=") case DoubleEqualsOperator: buffer.WriteString("==") case NotEqualsOperator: buffer.WriteString("!=") case InOperator: buffer.WriteString(" in ") case NotInOperator: buffer.WriteString(" notin ") case ExistsOperator: return buffer.String() } switch r.operator { case InOperator, NotInOperator: buffer.WriteString("(") } if len(r.strValues) == 1 { buffer.WriteString(r.strValues.List()[0]) } else { // only > 1 since == 0 prohibited by NewRequirement buffer.WriteString(strings.Join(r.strValues.List(), ",")) } switch r.operator { case InOperator, NotInOperator: buffer.WriteString(")") } return buffer.String() } // Add adds a requirement to the selector. It copies the current selector returning a new one func (lsel LabelSelector) Add(key string, operator Operator, values []string) Selector { var reqs []Requirement for _, item := range lsel { reqs = append(reqs, item) } if r, err := NewRequirement(key, operator, util.NewStringSet(values...)); err == nil { reqs = append(reqs, *r) } return LabelSelector(reqs) } // Matches for a LabelSelector returns true if all // its Requirements match the input Labels. If any // Requirement does not match, false is returned. func (lsel LabelSelector) Matches(l Labels) bool { for _, req := range lsel { if matches := req.Matches(l); !matches { return false } } return true } // String returns a comma-separated string of all // the LabelSelector Requirements' human-readable strings. func (lsel LabelSelector) String() string { var reqs []string for _, req := range lsel { reqs = append(reqs, req.String()) } return strings.Join(reqs, ",") } // constants definition for lexer token type Token int const ( ErrorToken Token = iota EndOfStringToken ClosedParToken CommaToken DoubleEqualsToken EqualsToken IdentifierToken // to represent keys and values InToken NotEqualsToken NotInToken OpenParToken ) // string2token contains the mapping between lexer Token and token literal // (except IdentifierToken, EndOfStringToken and ErrorToken since it makes no sense) var string2token = map[string]Token{ ")": ClosedParToken, ",": CommaToken, "==": DoubleEqualsToken, "=": EqualsToken, "in": InToken, "!=": NotEqualsToken, "notin": NotInToken, "(": OpenParToken, } // The item produced by the lexer. It contains the Token and the literal. type ScannedItem struct { tok Token literal string } // isWhitespace returns true if the rune is a space, tab, or newline. func isWhitespace(ch byte) bool { return ch == ' ' || ch == '\t' || ch == '\r' || ch == '\n' } // isSpecialSymbol detect if the character ch can be an operator func isSpecialSymbol(ch byte) bool { switch ch { case '=', '!', '(', ')', ',': return true } return false } // Lexer represents the Lexer struct for label selector. // It contains necessary informationt to tokenize the input string type Lexer struct { // s stores the string to be tokenized s string // pos is the position currently tokenized pos int } // read return the character currently lexed // increment the position and check the buffer overflow func (l *Lexer) read() (b byte) { b = 0 if l.pos < len(l.s) { b = l.s[l.pos] l.pos++ } return b } // unread 'undoes' the last read character func (l *Lexer) unread() { l.pos-- } // scanIdOrKeyword scans string to recognize literal token (for example 'in') or an identifier. func (l *Lexer) scanIdOrKeyword() (tok Token, lit string) { var buffer []byte IdentifierLoop: for { switch ch := l.read(); { case ch == 0: break IdentifierLoop case isSpecialSymbol(ch) || isWhitespace(ch): l.unread() break IdentifierLoop default: buffer = append(buffer, ch) } } s := string(buffer) if val, ok := string2token[s]; ok { // is a literal token? return val, s } return IdentifierToken, s // otherwise is an identifier } // scanSpecialSymbol scans string starting with special symbol. // special symbol identify non literal operators. "!=", "==", "=" func (l *Lexer) scanSpecialSymbol() (Token, string) { lastScannedItem := ScannedItem{} var buffer []byte SpecialSymbolLoop: for { switch ch := l.read(); { case ch == 0: break SpecialSymbolLoop case isSpecialSymbol(ch): buffer = append(buffer, ch) if token, ok := string2token[string(buffer)]; ok { lastScannedItem = ScannedItem{tok: token, literal: string(buffer)} } else if lastScannedItem.tok != 0 { l.unread() break SpecialSymbolLoop } default: l.unread() break SpecialSymbolLoop } } if lastScannedItem.tok == 0 { return ErrorToken, fmt.Sprintf("error expected: keyword found '%s'", buffer) } return lastScannedItem.tok, lastScannedItem.literal } // skipWhiteSpaces consumes all blank characters // returning the first non blank character func (l *Lexer) skipWhiteSpaces(ch byte) byte { for { if !isWhitespace(ch) { return ch } ch = l.read() } } // Lex returns a pair of Token and the literal // literal is meaningfull only for IdentifierToken token func (l *Lexer) Lex() (tok Token, lit string) { switch ch := l.skipWhiteSpaces(l.read()); { case ch == 0: return EndOfStringToken, "" case isSpecialSymbol(ch): l.unread() return l.scanSpecialSymbol() default: l.unread() return l.scanIdOrKeyword() } } // Parser data structure contains the label selector parser data strucutre type Parser struct { l *Lexer scannedItems []ScannedItem position int } // Parser context represents context during parsing: // some literal for example 'in' and 'notin' can be // recognized as operator for example 'x in (a)' but // it can be recognized as value for example 'value in (in)' type ParserContext int const ( KeyAndOperator ParserContext = iota Values ) // lookahead func returns the current token and string. No increment of current position func (p *Parser) lookahead(context ParserContext) (Token, string) { tok, lit := p.scannedItems[p.position].tok, p.scannedItems[p.position].literal if context == Values { switch tok { case InToken, NotInToken: tok = IdentifierToken } } return tok, lit } // consume returns current token and string. Increments the the position func (p *Parser) consume(context ParserContext) (Token, string) { p.position++ tok, lit := p.scannedItems[p.position-1].tok, p.scannedItems[p.position-1].literal if context == Values { switch tok { case InToken, NotInToken: tok = IdentifierToken } } return tok, lit } // scan runs through the input string and stores the ScannedItem in an array // Parser can now lookahead and consume the tokens func (p *Parser) scan() { for { token, literal := p.l.Lex() p.scannedItems = append(p.scannedItems, ScannedItem{token, literal}) if token == EndOfStringToken { break } } } // parse runs the left recursive descending algorithm // on input string. It returns a list of Requirement objects. func (p *Parser) parse() ([]Requirement, error) { p.scan() // init scannedItems var requirements []Requirement for { tok, lit := p.lookahead(Values) switch tok { case IdentifierToken: r, err := p.parseRequirement() if err != nil { return nil, fmt.Errorf("unable to parse requiremnt: ", err) } requirements = append(requirements, *r) t, l := p.consume(Values) switch t { case EndOfStringToken: return requirements, nil case CommaToken: t2, l2 := p.lookahead(Values) if t2 != IdentifierToken { return nil, fmt.Errorf("found '%s', expected: identifier after ','", l2) } default: return nil, fmt.Errorf("found '%s', expected: ',' or 'end of string'", l) } case EndOfStringToken: return requirements, nil default: return nil, fmt.Errorf("found '%s', expected: identifier or 'end of string'", lit) } } return requirements, nil } func (p *Parser) parseRequirement() (*Requirement, error) { key, operator, err := p.parseKeyAndInferOperator() if err != nil { return nil, err } if operator == ExistsOperator { // operator Exists found lookahead set checked return NewRequirement(key, operator, nil) } operator, err = p.parseOperator() if err != nil { return nil, err } var values util.StringSet switch operator { case InOperator, NotInOperator: values, err = p.parseValues() case EqualsOperator, DoubleEqualsOperator, NotEqualsOperator: values, err = p.parseExactValue() } if err != nil { return nil, err } return NewRequirement(key, operator, values) } // parseKeyAndInferOperator parse literals. // in case of no operator 'in, notin, ==, =, !=' are found // the 'exists' operattor is inferred func (p *Parser) parseKeyAndInferOperator() (string, Operator, error) { tok, literal := p.consume(Values) if tok != IdentifierToken { err := fmt.Errorf("found '%s', expected: identifier", literal) return "", "", err } if err := validateLabelKey(literal); err != nil { return "", "", err } var operator Operator if t, _ := p.lookahead(Values); t == EndOfStringToken || t == CommaToken { operator = ExistsOperator } return literal, operator, nil } // parseOperator return operator and eventually matchType // matchType can be exact func (p *Parser) parseOperator() (op Operator, err error) { tok, lit := p.consume(KeyAndOperator) switch tok { case InToken: op = InOperator case EqualsToken: op = EqualsOperator case DoubleEqualsToken: op = DoubleEqualsOperator case NotInToken: op = NotInOperator case NotEqualsToken: op = NotEqualsOperator default: return "", fmt.Errorf("found '%s', expected: '=', '!=', '==', 'in', notin'", lit) } return op, nil } // parseValues parses the values for set based matching (x,y,z) func (p *Parser) parseValues() (util.StringSet, error) { tok, lit := p.consume(Values) if tok != OpenParToken { return nil, fmt.Errorf("found '%s' expected: '('", lit) } tok, lit = p.lookahead(Values) switch tok { case IdentifierToken, CommaToken: s, err := p.parseIdentifiersList() // handles general cases if err != nil { return s, err } if tok, _ = p.consume(Values); tok != ClosedParToken { return nil, fmt.Errorf("found '%s', expected: ')'", lit) } return s, nil case ClosedParToken: // handles "()" p.consume(Values) return util.NewStringSet(""), nil default: return nil, fmt.Errorf("found '%s', expected: ',', ')' or identifier", lit) } return util.NewStringSet(), nil } // parseIdentifiersList parses a (possibly empty) list of // of comma separated (possibly empty) identifiers func (p *Parser) parseIdentifiersList() (util.StringSet, error) { s := util.NewStringSet() for { tok, lit := p.consume(Values) switch tok { case IdentifierToken: s.Insert(lit) tok2, lit2 := p.lookahead(Values) switch tok2 { case CommaToken: continue case ClosedParToken: return s, nil default: return nil, fmt.Errorf("found '%s', expected: ',' or ')'", lit2) } case CommaToken: // handled here since we can have "(," if s.Len() == 0 { s.Insert("") // to handle (, } tok2, _ := p.lookahead(Values) if tok2 == ClosedParToken { s.Insert("") // to handle ,) Double "" removed by StringSet return s, nil } if tok2 == CommaToken { p.consume(Values) s.Insert("") // to handle ,, Double "" removed by StringSet } default: // it can be operator return s, fmt.Errorf("found '%s', expected: ',', or identifier", lit) } } } // parseExactValue parses the only value for exact match style func (p *Parser) parseExactValue() (util.StringSet, error) { s := util.NewStringSet() tok, lit := p.consume(Values) if tok == IdentifierToken { s.Insert(lit) return s, nil } return nil, fmt.Errorf("found '%s', expected: identifier", lit) } // Parse takes a string representing a selector and returns a selector // object, or an error. This parsing function differs from ParseSelector // as they parse different selectors with different syntaxes. // The input will cause an error if it does not follow this form: // // ::= | "," ] // ::= KEY [ | // ::= "" | // ::= | // ::= "not" // ::= "in" // ::= "(" ")" // ::= VALUE | VALUE "," // ::= ["="|"=="|"!="] VALUE // KEY is a sequence of one or more characters following [ DNS_SUBDOMAIN "/" ] DNS_LABEL // VALUE is a sequence of zero or more characters "([A-Za-z0-9_-\.])". Max length is 64 character. // Delimiter is white space: (' ', '\t') // Example of valid syntax: // "x in (foo,,baz),y,z not in ()" // // Note: // (1) Inclusion - " in " - denotes that the KEY is equal to any of the // VALUEs in its requirement // (2) Exclusion - " not in " - denotes that the KEY is not equal to any // of the VALUEs in its requirement // (3) The empty string is a valid VALUE // (4) A requirement with just a KEY - as in "y" above - denotes that // the KEY exists and can be any VALUE. // func Parse(selector string) (Selector, error) { p := &Parser{l: &Lexer{s: selector, pos: 0}} items, error := p.parse() if error == nil { sort.Sort(ByKey(items)) // sort to grant determistic parsing return LabelSelector(items), error } return nil, error } const qualifiedNameErrorMsg string = "must match regex [" + util.DNS1123SubdomainFmt + " / ] " + util.DNS1123LabelFmt func validateLabelKey(k string) error { if !util.IsQualifiedName(k) { return fielderrors.NewFieldInvalid("label key", k, qualifiedNameErrorMsg) } return nil } func validateLabelValue(v string) error { if !util.IsValidLabelValue(v) { return fielderrors.NewFieldInvalid("label value", v, qualifiedNameErrorMsg) } return nil } // SelectorFromSet returns a Selector which will match exactly the given Set. A // nil Set is considered equivalent to Everything(). func SelectorFromSet(ls Set) Selector { if ls == nil { return LabelSelector{} } var requirements []Requirement for label, value := range ls { if r, err := NewRequirement(label, EqualsOperator, util.NewStringSet(value)); err != nil { //TODO: double check errors when input comes from serialization? return LabelSelector{} } else { requirements = append(requirements, *r) } } return LabelSelector(requirements) }