package ebpf import ( "bytes" "encoding/binary" "errors" "fmt" "math" "strings" "time" "github.com/cilium/ebpf/asm" "github.com/cilium/ebpf/internal" "github.com/cilium/ebpf/internal/btf" "github.com/cilium/ebpf/internal/unix" ) // ErrNotSupported is returned whenever the kernel doesn't support a feature. var ErrNotSupported = internal.ErrNotSupported // ProgramID represents the unique ID of an eBPF program type ProgramID uint32 const ( // Number of bytes to pad the output buffer for BPF_PROG_TEST_RUN. // This is currently the maximum of spare space allocated for SKB // and XDP programs, and equal to XDP_PACKET_HEADROOM + NET_IP_ALIGN. outputPad = 256 + 2 ) // DefaultVerifierLogSize is the default number of bytes allocated for the // verifier log. const DefaultVerifierLogSize = 64 * 1024 // ProgramOptions control loading a program into the kernel. type ProgramOptions struct { // Controls the detail emitted by the kernel verifier. Set to non-zero // to enable logging. LogLevel uint32 // Controls the output buffer size for the verifier. Defaults to // DefaultVerifierLogSize. LogSize int } // ProgramSpec defines a Program type ProgramSpec struct { // Name is passed to the kernel as a debug aid. Must only contain // alpha numeric and '_' characters. Name string // Type determines at which hook in the kernel a program will run. Type ProgramType AttachType AttachType // Name of a kernel data structure to attach to. It's interpretation // depends on Type and AttachType. AttachTo string Instructions asm.Instructions // License of the program. Some helpers are only available if // the license is deemed compatible with the GPL. // // See https://www.kernel.org/doc/html/latest/process/license-rules.html#id1 License string // Version used by tracing programs. // // Deprecated: superseded by BTF. KernelVersion uint32 // The BTF associated with this program. Changing Instructions // will most likely invalidate the contained data, and may // result in errors when attempting to load it into the kernel. BTF *btf.Program // The byte order this program was compiled for, may be nil. ByteOrder binary.ByteOrder } // Copy returns a copy of the spec. func (ps *ProgramSpec) Copy() *ProgramSpec { if ps == nil { return nil } cpy := *ps cpy.Instructions = make(asm.Instructions, len(ps.Instructions)) copy(cpy.Instructions, ps.Instructions) return &cpy } // Program represents BPF program loaded into the kernel. // // It is not safe to close a Program which is used by other goroutines. type Program struct { // Contains the output of the kernel verifier if enabled, // otherwise it is empty. VerifierLog string fd *internal.FD name string abi ProgramABI attachType AttachType } // NewProgram creates a new Program. // // Loading a program for the first time will perform // feature detection by loading small, temporary programs. func NewProgram(spec *ProgramSpec) (*Program, error) { return NewProgramWithOptions(spec, ProgramOptions{}) } // NewProgramWithOptions creates a new Program. // // Loading a program for the first time will perform // feature detection by loading small, temporary programs. func NewProgramWithOptions(spec *ProgramSpec, opts ProgramOptions) (*Program, error) { if spec.BTF == nil { return newProgramWithBTF(spec, nil, opts) } handle, err := btf.NewHandle(btf.ProgramSpec(spec.BTF)) if err != nil && !errors.Is(err, btf.ErrNotSupported) { return nil, fmt.Errorf("can't load BTF: %w", err) } return newProgramWithBTF(spec, handle, opts) } func newProgramWithBTF(spec *ProgramSpec, btf *btf.Handle, opts ProgramOptions) (*Program, error) { attr, err := convertProgramSpec(spec, btf) if err != nil { return nil, err } logSize := DefaultVerifierLogSize if opts.LogSize > 0 { logSize = opts.LogSize } var logBuf []byte if opts.LogLevel > 0 { logBuf = make([]byte, logSize) attr.logLevel = opts.LogLevel attr.logSize = uint32(len(logBuf)) attr.logBuf = internal.NewSlicePointer(logBuf) } fd, err := bpfProgLoad(attr) if err == nil { prog := newProgram(fd, spec.Name, &ProgramABI{spec.Type}) prog.VerifierLog = internal.CString(logBuf) return prog, nil } logErr := err if opts.LogLevel == 0 { // Re-run with the verifier enabled to get better error messages. logBuf = make([]byte, logSize) attr.logLevel = 1 attr.logSize = uint32(len(logBuf)) attr.logBuf = internal.NewSlicePointer(logBuf) _, logErr = bpfProgLoad(attr) } err = internal.ErrorWithLog(err, logBuf, logErr) return nil, fmt.Errorf("can't load program: %w", err) } // NewProgramFromFD creates a program from a raw fd. // // You should not use fd after calling this function. // // Requires at least Linux 4.11. func NewProgramFromFD(fd int) (*Program, error) { if fd < 0 { return nil, errors.New("invalid fd") } bpfFd := internal.NewFD(uint32(fd)) name, abi, err := newProgramABIFromFd(bpfFd) if err != nil { bpfFd.Forget() return nil, err } return newProgram(bpfFd, name, abi), nil } func newProgram(fd *internal.FD, name string, abi *ProgramABI) *Program { return &Program{ name: name, fd: fd, abi: *abi, } } func convertProgramSpec(spec *ProgramSpec, handle *btf.Handle) (*bpfProgLoadAttr, error) { if len(spec.Instructions) == 0 { return nil, errors.New("Instructions cannot be empty") } if len(spec.License) == 0 { return nil, errors.New("License cannot be empty") } if spec.ByteOrder != nil && spec.ByteOrder != internal.NativeEndian { return nil, fmt.Errorf("can't load %s program on %s", spec.ByteOrder, internal.NativeEndian) } buf := bytes.NewBuffer(make([]byte, 0, len(spec.Instructions)*asm.InstructionSize)) err := spec.Instructions.Marshal(buf, internal.NativeEndian) if err != nil { return nil, err } bytecode := buf.Bytes() insCount := uint32(len(bytecode) / asm.InstructionSize) attr := &bpfProgLoadAttr{ progType: spec.Type, expectedAttachType: spec.AttachType, insCount: insCount, instructions: internal.NewSlicePointer(bytecode), license: internal.NewStringPointer(spec.License), kernelVersion: spec.KernelVersion, } if haveObjName() == nil { attr.progName = newBPFObjName(spec.Name) } if handle != nil && spec.BTF != nil { attr.progBTFFd = uint32(handle.FD()) recSize, bytes, err := btf.ProgramLineInfos(spec.BTF) if err != nil { return nil, fmt.Errorf("can't get BTF line infos: %w", err) } attr.lineInfoRecSize = recSize attr.lineInfoCnt = uint32(uint64(len(bytes)) / uint64(recSize)) attr.lineInfo = internal.NewSlicePointer(bytes) recSize, bytes, err = btf.ProgramFuncInfos(spec.BTF) if err != nil { return nil, fmt.Errorf("can't get BTF function infos: %w", err) } attr.funcInfoRecSize = recSize attr.funcInfoCnt = uint32(uint64(len(bytes)) / uint64(recSize)) attr.funcInfo = internal.NewSlicePointer(bytes) } if spec.AttachTo != "" { target, err := resolveBTFType(spec.AttachTo, spec.Type, spec.AttachType) if err != nil { return nil, err } if target != nil { attr.attachBTFID = target.ID() } } return attr, nil } func (p *Program) String() string { if p.name != "" { return fmt.Sprintf("%s(%s)#%v", p.abi.Type, p.name, p.fd) } return fmt.Sprintf("%s#%v", p.abi.Type, p.fd) } // ABI gets the ABI of the Program func (p *Program) ABI() ProgramABI { return p.abi } // FD gets the file descriptor of the Program. // // It is invalid to call this function after Close has been called. func (p *Program) FD() int { fd, err := p.fd.Value() if err != nil { // Best effort: -1 is the number most likely to be an // invalid file descriptor. return -1 } return int(fd) } // Clone creates a duplicate of the Program. // // Closing the duplicate does not affect the original, and vice versa. // // Cloning a nil Program returns nil. func (p *Program) Clone() (*Program, error) { if p == nil { return nil, nil } dup, err := p.fd.Dup() if err != nil { return nil, fmt.Errorf("can't clone program: %w", err) } return newProgram(dup, p.name, &p.abi), nil } // Pin persists the Program past the lifetime of the process that created it // // This requires bpffs to be mounted above fileName. See http://cilium.readthedocs.io/en/doc-1.0/kubernetes/install/#mounting-the-bpf-fs-optional func (p *Program) Pin(fileName string) error { if err := internal.BPFObjPin(fileName, p.fd); err != nil { return fmt.Errorf("can't pin program: %w", err) } return nil } // Close unloads the program from the kernel. func (p *Program) Close() error { if p == nil { return nil } return p.fd.Close() } // Test runs the Program in the kernel with the given input and returns the // value returned by the eBPF program. outLen may be zero. // // Note: the kernel expects at least 14 bytes input for an ethernet header for // XDP and SKB programs. // // This function requires at least Linux 4.12. func (p *Program) Test(in []byte) (uint32, []byte, error) { ret, out, _, err := p.testRun(in, 1, nil) if err != nil { return ret, nil, fmt.Errorf("can't test program: %w", err) } return ret, out, nil } // Benchmark runs the Program with the given input for a number of times // and returns the time taken per iteration. // // Returns the result of the last execution of the program and the time per // run or an error. reset is called whenever the benchmark syscall is // interrupted, and should be set to testing.B.ResetTimer or similar. // // Note: profiling a call to this function will skew it's results, see // https://github.com/cilium/ebpf/issues/24 // // This function requires at least Linux 4.12. func (p *Program) Benchmark(in []byte, repeat int, reset func()) (uint32, time.Duration, error) { ret, _, total, err := p.testRun(in, repeat, reset) if err != nil { return ret, total, fmt.Errorf("can't benchmark program: %w", err) } return ret, total, nil } var haveProgTestRun = internal.FeatureTest("BPF_PROG_TEST_RUN", "4.12", func() (bool, error) { prog, err := NewProgram(&ProgramSpec{ Type: SocketFilter, Instructions: asm.Instructions{ asm.LoadImm(asm.R0, 0, asm.DWord), asm.Return(), }, License: "MIT", }) if err != nil { // This may be because we lack sufficient permissions, etc. return false, err } defer prog.Close() // Programs require at least 14 bytes input in := make([]byte, 14) attr := bpfProgTestRunAttr{ fd: uint32(prog.FD()), dataSizeIn: uint32(len(in)), dataIn: internal.NewSlicePointer(in), } err = bpfProgTestRun(&attr) // Check for EINVAL specifically, rather than err != nil since we // otherwise misdetect due to insufficient permissions. return !errors.Is(err, unix.EINVAL), nil }) func (p *Program) testRun(in []byte, repeat int, reset func()) (uint32, []byte, time.Duration, error) { if uint(repeat) > math.MaxUint32 { return 0, nil, 0, fmt.Errorf("repeat is too high") } if len(in) == 0 { return 0, nil, 0, fmt.Errorf("missing input") } if uint(len(in)) > math.MaxUint32 { return 0, nil, 0, fmt.Errorf("input is too long") } if err := haveProgTestRun(); err != nil { return 0, nil, 0, err } // Older kernels ignore the dataSizeOut argument when copying to user space. // Combined with things like bpf_xdp_adjust_head() we don't really know what the final // size will be. Hence we allocate an output buffer which we hope will always be large // enough, and panic if the kernel wrote past the end of the allocation. // See https://patchwork.ozlabs.org/cover/1006822/ out := make([]byte, len(in)+outputPad) fd, err := p.fd.Value() if err != nil { return 0, nil, 0, err } attr := bpfProgTestRunAttr{ fd: fd, dataSizeIn: uint32(len(in)), dataSizeOut: uint32(len(out)), dataIn: internal.NewSlicePointer(in), dataOut: internal.NewSlicePointer(out), repeat: uint32(repeat), } for { err = bpfProgTestRun(&attr) if err == nil { break } if errors.Is(err, unix.EINTR) { if reset != nil { reset() } continue } return 0, nil, 0, fmt.Errorf("can't run test: %w", err) } if int(attr.dataSizeOut) > cap(out) { // Houston, we have a problem. The program created more data than we allocated, // and the kernel wrote past the end of our buffer. panic("kernel wrote past end of output buffer") } out = out[:int(attr.dataSizeOut)] total := time.Duration(attr.duration) * time.Nanosecond return attr.retval, out, total, nil } func unmarshalProgram(buf []byte) (*Program, error) { if len(buf) != 4 { return nil, errors.New("program id requires 4 byte value") } // Looking up an entry in a nested map or prog array returns an id, // not an fd. id := internal.NativeEndian.Uint32(buf) return NewProgramFromID(ProgramID(id)) } // MarshalBinary implements BinaryMarshaler. func (p *Program) MarshalBinary() ([]byte, error) { value, err := p.fd.Value() if err != nil { return nil, err } buf := make([]byte, 4) internal.NativeEndian.PutUint32(buf, value) return buf, nil } // Attach a Program. // // Deprecated: use link.RawAttachProgram instead. func (p *Program) Attach(fd int, typ AttachType, flags AttachFlags) error { if fd < 0 { return errors.New("invalid fd") } pfd, err := p.fd.Value() if err != nil { return err } attr := internal.BPFProgAttachAttr{ TargetFd: uint32(fd), AttachBpfFd: pfd, AttachType: uint32(typ), AttachFlags: uint32(flags), } return internal.BPFProgAttach(&attr) } // Detach a Program. // // Deprecated: use link.RawDetachProgram instead. func (p *Program) Detach(fd int, typ AttachType, flags AttachFlags) error { if fd < 0 { return errors.New("invalid fd") } if flags != 0 { return errors.New("flags must be zero") } pfd, err := p.fd.Value() if err != nil { return err } attr := internal.BPFProgDetachAttr{ TargetFd: uint32(fd), AttachBpfFd: pfd, AttachType: uint32(typ), } return internal.BPFProgDetach(&attr) } // LoadPinnedProgram loads a Program from a BPF file. // // Requires at least Linux 4.11. func LoadPinnedProgram(fileName string) (*Program, error) { fd, err := internal.BPFObjGet(fileName) if err != nil { return nil, err } name, abi, err := newProgramABIFromFd(fd) if err != nil { _ = fd.Close() return nil, fmt.Errorf("can't get ABI for %s: %w", fileName, err) } return newProgram(fd, name, abi), nil } // SanitizeName replaces all invalid characters in name. // // Use this to automatically generate valid names for maps and // programs at run time. // // Passing a negative value for replacement will delete characters // instead of replacing them. func SanitizeName(name string, replacement rune) string { return strings.Map(func(char rune) rune { if invalidBPFObjNameChar(char) { return replacement } return char }, name) } // ProgramGetNextID returns the ID of the next eBPF program. // // Returns ErrNotExist, if there is no next eBPF program. func ProgramGetNextID(startID ProgramID) (ProgramID, error) { id, err := objGetNextID(internal.BPF_PROG_GET_NEXT_ID, uint32(startID)) return ProgramID(id), err } // NewProgramFromID returns the program for a given id. // // Returns ErrNotExist, if there is no eBPF program with the given id. func NewProgramFromID(id ProgramID) (*Program, error) { fd, err := bpfObjGetFDByID(internal.BPF_PROG_GET_FD_BY_ID, uint32(id)) if err != nil { return nil, err } name, abi, err := newProgramABIFromFd(fd) if err != nil { _ = fd.Close() return nil, err } return newProgram(fd, name, abi), nil } // ID returns the systemwide unique ID of the program. func (p *Program) ID() (ProgramID, error) { info, err := bpfGetProgInfoByFD(p.fd) if err != nil { return ProgramID(0), err } return ProgramID(info.id), nil } func resolveBTFType(name string, progType ProgramType, attachType AttachType) (btf.Type, error) { kernel, err := btf.LoadKernelSpec() if err != nil { return nil, fmt.Errorf("can't resolve BTF type %s: %w", name, err) } type match struct { p ProgramType a AttachType } target := match{progType, attachType} switch target { case match{Tracing, AttachTraceIter}: var target btf.Func if err := kernel.FindType("bpf_iter_"+name, &target); err != nil { return nil, fmt.Errorf("can't resolve BTF for iterator %s: %w", name, err) } return &target, nil default: return nil, nil } }