/* Copyright 2017 The Kubernetes Authors. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package ipvs import ( "bytes" "fmt" "io/ioutil" "net" "regexp" "strconv" "strings" "sync" "sync/atomic" "time" "k8s.io/klog" "k8s.io/api/core/v1" "k8s.io/apimachinery/pkg/types" "k8s.io/apimachinery/pkg/util/sets" "k8s.io/apimachinery/pkg/util/wait" "k8s.io/client-go/tools/record" "k8s.io/kubernetes/pkg/proxy" "k8s.io/kubernetes/pkg/proxy/healthcheck" "k8s.io/kubernetes/pkg/proxy/metrics" utilproxy "k8s.io/kubernetes/pkg/proxy/util" "k8s.io/kubernetes/pkg/util/async" "k8s.io/kubernetes/pkg/util/conntrack" utilipset "k8s.io/kubernetes/pkg/util/ipset" utiliptables "k8s.io/kubernetes/pkg/util/iptables" utilipvs "k8s.io/kubernetes/pkg/util/ipvs" utilsysctl "k8s.io/kubernetes/pkg/util/sysctl" utilexec "k8s.io/utils/exec" utilnet "k8s.io/utils/net" ) const ( // kubeServicesChain is the services portal chain kubeServicesChain utiliptables.Chain = "KUBE-SERVICES" // KubeFireWallChain is the kubernetes firewall chain. KubeFireWallChain utiliptables.Chain = "KUBE-FIREWALL" // kubePostroutingChain is the kubernetes postrouting chain kubePostroutingChain utiliptables.Chain = "KUBE-POSTROUTING" // KubeMarkMasqChain is the mark-for-masquerade chain KubeMarkMasqChain utiliptables.Chain = "KUBE-MARK-MASQ" // KubeNodePortChain is the kubernetes node port chain KubeNodePortChain utiliptables.Chain = "KUBE-NODE-PORT" // KubeMarkDropChain is the mark-for-drop chain KubeMarkDropChain utiliptables.Chain = "KUBE-MARK-DROP" // KubeForwardChain is the kubernetes forward chain KubeForwardChain utiliptables.Chain = "KUBE-FORWARD" // KubeLoadBalancerChain is the kubernetes chain for loadbalancer type service KubeLoadBalancerChain utiliptables.Chain = "KUBE-LOAD-BALANCER" // DefaultScheduler is the default ipvs scheduler algorithm - round robin. DefaultScheduler = "rr" // DefaultDummyDevice is the default dummy interface which ipvs service address will bind to it. DefaultDummyDevice = "kube-ipvs0" ) // iptablesJumpChain is tables of iptables chains that ipvs proxier used to install iptables or cleanup iptables. // `to` is the iptables chain we want to operate. // `from` is the source iptables chain var iptablesJumpChain = []struct { table utiliptables.Table from utiliptables.Chain to utiliptables.Chain comment string }{ {utiliptables.TableNAT, utiliptables.ChainOutput, kubeServicesChain, "kubernetes service portals"}, {utiliptables.TableNAT, utiliptables.ChainPrerouting, kubeServicesChain, "kubernetes service portals"}, {utiliptables.TableNAT, utiliptables.ChainPostrouting, kubePostroutingChain, "kubernetes postrouting rules"}, {utiliptables.TableFilter, utiliptables.ChainForward, KubeForwardChain, "kubernetes forwarding rules"}, } var iptablesChains = []struct { table utiliptables.Table chain utiliptables.Chain }{ {utiliptables.TableNAT, kubeServicesChain}, {utiliptables.TableNAT, kubePostroutingChain}, {utiliptables.TableNAT, KubeFireWallChain}, {utiliptables.TableNAT, KubeNodePortChain}, {utiliptables.TableNAT, KubeLoadBalancerChain}, {utiliptables.TableNAT, KubeMarkMasqChain}, {utiliptables.TableFilter, KubeForwardChain}, } // ipsetInfo is all ipset we needed in ipvs proxier var ipsetInfo = []struct { name string setType utilipset.Type comment string }{ {kubeLoopBackIPSet, utilipset.HashIPPortIP, kubeLoopBackIPSetComment}, {kubeClusterIPSet, utilipset.HashIPPort, kubeClusterIPSetComment}, {kubeExternalIPSet, utilipset.HashIPPort, kubeExternalIPSetComment}, {kubeLoadBalancerSet, utilipset.HashIPPort, kubeLoadBalancerSetComment}, {kubeLoadbalancerFWSet, utilipset.HashIPPort, kubeLoadbalancerFWSetComment}, {kubeLoadBalancerLocalSet, utilipset.HashIPPort, kubeLoadBalancerLocalSetComment}, {kubeLoadBalancerSourceIPSet, utilipset.HashIPPortIP, kubeLoadBalancerSourceIPSetComment}, {kubeLoadBalancerSourceCIDRSet, utilipset.HashIPPortNet, kubeLoadBalancerSourceCIDRSetComment}, {kubeNodePortSetTCP, utilipset.BitmapPort, kubeNodePortSetTCPComment}, {kubeNodePortLocalSetTCP, utilipset.BitmapPort, kubeNodePortLocalSetTCPComment}, {kubeNodePortSetUDP, utilipset.BitmapPort, kubeNodePortSetUDPComment}, {kubeNodePortLocalSetUDP, utilipset.BitmapPort, kubeNodePortLocalSetUDPComment}, {kubeNodePortSetSCTP, utilipset.BitmapPort, kubeNodePortSetSCTPComment}, {kubeNodePortLocalSetSCTP, utilipset.BitmapPort, kubeNodePortLocalSetSCTPComment}, } // ipsetWithIptablesChain is the ipsets list with iptables source chain and the chain jump to // `iptables -t nat -A -m set --match-set -j ` // example: iptables -t nat -A KUBE-SERVICES -m set --match-set KUBE-NODE-PORT-TCP dst -j KUBE-NODE-PORT // ipsets with other match rules will be created Individually. // Note: kubeNodePortLocalSetTCP must be prior to kubeNodePortSetTCP, the same for UDP. var ipsetWithIptablesChain = []struct { name string from string to string matchType string protocolMatch string }{ {kubeLoopBackIPSet, string(kubePostroutingChain), "MASQUERADE", "dst,dst,src", ""}, {kubeLoadBalancerSet, string(kubeServicesChain), string(KubeLoadBalancerChain), "dst,dst", ""}, {kubeLoadbalancerFWSet, string(KubeLoadBalancerChain), string(KubeFireWallChain), "dst,dst", ""}, {kubeLoadBalancerSourceCIDRSet, string(KubeFireWallChain), "RETURN", "dst,dst,src", ""}, {kubeLoadBalancerSourceIPSet, string(KubeFireWallChain), "RETURN", "dst,dst,src", ""}, {kubeLoadBalancerLocalSet, string(KubeLoadBalancerChain), "RETURN", "dst,dst", ""}, {kubeNodePortLocalSetTCP, string(KubeNodePortChain), "RETURN", "dst", "tcp"}, {kubeNodePortSetTCP, string(KubeNodePortChain), string(KubeMarkMasqChain), "dst", "tcp"}, {kubeNodePortLocalSetUDP, string(KubeNodePortChain), "RETURN", "dst", "udp"}, {kubeNodePortSetUDP, string(KubeNodePortChain), string(KubeMarkMasqChain), "dst", "udp"}, {kubeNodePortSetSCTP, string(kubeServicesChain), string(KubeNodePortChain), "dst", "sctp"}, {kubeNodePortLocalSetSCTP, string(KubeNodePortChain), "RETURN", "dst", "sctp"}, } // In IPVS proxy mode, the following flags need to be set const sysctlRouteLocalnet = "net/ipv4/conf/all/route_localnet" const sysctlBridgeCallIPTables = "net/bridge/bridge-nf-call-iptables" const sysctlVSConnTrack = "net/ipv4/vs/conntrack" const sysctlConnReuse = "net/ipv4/vs/conn_reuse_mode" const sysctlExpireNoDestConn = "net/ipv4/vs/expire_nodest_conn" const sysctlExpireQuiescentTemplate = "net/ipv4/vs/expire_quiescent_template" const sysctlForward = "net/ipv4/ip_forward" const sysctlArpIgnore = "net/ipv4/conf/all/arp_ignore" const sysctlArpAnnounce = "net/ipv4/conf/all/arp_announce" // Proxier is an ipvs based proxy for connections between a localhost:lport // and services that provide the actual backends. type Proxier struct { // endpointsChanges and serviceChanges contains all changes to endpoints and // services that happened since last syncProxyRules call. For a single object, // changes are accumulated, i.e. previous is state from before all of them, // current is state after applying all of those. endpointsChanges *proxy.EndpointChangeTracker serviceChanges *proxy.ServiceChangeTracker mu sync.Mutex // protects the following fields serviceMap proxy.ServiceMap endpointsMap proxy.EndpointsMap portsMap map[utilproxy.LocalPort]utilproxy.Closeable // endpointsSynced and servicesSynced are set to true when corresponding // objects are synced after startup. This is used to avoid updating ipvs rules // with some partial data after kube-proxy restart. endpointsSynced bool servicesSynced bool initialized int32 syncRunner *async.BoundedFrequencyRunner // governs calls to syncProxyRules // These are effectively const and do not need the mutex to be held. syncPeriod time.Duration minSyncPeriod time.Duration // Values are CIDR's to exclude when cleaning up IPVS rules. excludeCIDRs []string // Set to true to set sysctls arp_ignore and arp_announce strictARP bool iptables utiliptables.Interface ipvs utilipvs.Interface ipset utilipset.Interface exec utilexec.Interface masqueradeAll bool masqueradeMark string clusterCIDR string hostname string nodeIP net.IP portMapper utilproxy.PortOpener recorder record.EventRecorder healthChecker healthcheck.Server healthzServer healthcheck.HealthzUpdater ipvsScheduler string // Added as a member to the struct to allow injection for testing. ipGetter IPGetter // The following buffers are used to reuse memory and avoid allocations // that are significantly impacting performance. iptablesData *bytes.Buffer filterChainsData *bytes.Buffer natChains *bytes.Buffer filterChains *bytes.Buffer natRules *bytes.Buffer filterRules *bytes.Buffer // Added as a member to the struct to allow injection for testing. netlinkHandle NetLinkHandle // ipsetList is the list of ipsets that ipvs proxier used. ipsetList map[string]*IPSet // Values are as a parameter to select the interfaces which nodeport works. nodePortAddresses []string // networkInterfacer defines an interface for several net library functions. // Inject for test purpose. networkInterfacer utilproxy.NetworkInterfacer gracefuldeleteManager *GracefulTerminationManager } // IPGetter helps get node network interface IP type IPGetter interface { NodeIPs() ([]net.IP, error) } // realIPGetter is a real NodeIP handler, it implements IPGetter. type realIPGetter struct { // nl is a handle for revoking netlink interface nl NetLinkHandle } // NodeIPs returns all LOCAL type IP addresses from host which are taken as the Node IPs of NodePort service. // It will list source IP exists in local route table with `kernel` protocol type, and filter out IPVS proxier // created dummy device `kube-ipvs0` For example, // $ ip route show table local type local proto kernel // 10.0.0.1 dev kube-ipvs0 scope host src 10.0.0.1 // 10.0.0.10 dev kube-ipvs0 scope host src 10.0.0.10 // 10.0.0.252 dev kube-ipvs0 scope host src 10.0.0.252 // 100.106.89.164 dev eth0 scope host src 100.106.89.164 // 127.0.0.0/8 dev lo scope host src 127.0.0.1 // 127.0.0.1 dev lo scope host src 127.0.0.1 // 172.17.0.1 dev docker0 scope host src 172.17.0.1 // 192.168.122.1 dev virbr0 scope host src 192.168.122.1 // Then filter out dev==kube-ipvs0, and cut the unique src IP fields, // Node IP set: [100.106.89.164, 127.0.0.1, 192.168.122.1] func (r *realIPGetter) NodeIPs() (ips []net.IP, err error) { // Pass in empty filter device name for list all LOCAL type addresses. nodeAddress, err := r.nl.GetLocalAddresses("", DefaultDummyDevice) if err != nil { return nil, fmt.Errorf("error listing LOCAL type addresses from host, error: %v", err) } // translate ip string to IP for _, ipStr := range nodeAddress.UnsortedList() { ips = append(ips, net.ParseIP(ipStr)) } return ips, nil } // Proxier implements ProxyProvider var _ proxy.ProxyProvider = &Proxier{} // NewProxier returns a new Proxier given an iptables and ipvs Interface instance. // Because of the iptables and ipvs logic, it is assumed that there is only a single Proxier active on a machine. // An error will be returned if it fails to update or acquire the initial lock. // Once a proxier is created, it will keep iptables and ipvs rules up to date in the background and // will not terminate if a particular iptables or ipvs call fails. func NewProxier(ipt utiliptables.Interface, ipvs utilipvs.Interface, ipset utilipset.Interface, sysctl utilsysctl.Interface, exec utilexec.Interface, syncPeriod time.Duration, minSyncPeriod time.Duration, excludeCIDRs []string, strictARP bool, masqueradeAll bool, masqueradeBit int, clusterCIDR string, hostname string, nodeIP net.IP, recorder record.EventRecorder, healthzServer healthcheck.HealthzUpdater, scheduler string, nodePortAddresses []string, ) (*Proxier, error) { // Set the route_localnet sysctl we need for if val, _ := sysctl.GetSysctl(sysctlRouteLocalnet); val != 1 { if err := sysctl.SetSysctl(sysctlRouteLocalnet, 1); err != nil { return nil, fmt.Errorf("can't set sysctl %s: %v", sysctlRouteLocalnet, err) } } // Proxy needs br_netfilter and bridge-nf-call-iptables=1 when containers // are connected to a Linux bridge (but not SDN bridges). Until most // plugins handle this, log when config is missing if val, err := sysctl.GetSysctl(sysctlBridgeCallIPTables); err == nil && val != 1 { klog.Infof("missing br-netfilter module or unset sysctl br-nf-call-iptables; proxy may not work as intended") } // Set the conntrack sysctl we need for if val, _ := sysctl.GetSysctl(sysctlVSConnTrack); val != 1 { if err := sysctl.SetSysctl(sysctlVSConnTrack, 1); err != nil { return nil, fmt.Errorf("can't set sysctl %s: %v", sysctlVSConnTrack, err) } } // Set the connection reuse mode if val, _ := sysctl.GetSysctl(sysctlConnReuse); val != 0 { if err := sysctl.SetSysctl(sysctlConnReuse, 0); err != nil { return nil, fmt.Errorf("can't set sysctl %s: %v", sysctlConnReuse, err) } } // Set the expire_nodest_conn sysctl we need for if val, _ := sysctl.GetSysctl(sysctlExpireNoDestConn); val != 1 { if err := sysctl.SetSysctl(sysctlExpireNoDestConn, 1); err != nil { return nil, fmt.Errorf("can't set sysctl %s: %v", sysctlExpireNoDestConn, err) } } // Set the expire_quiescent_template sysctl we need for if val, _ := sysctl.GetSysctl(sysctlExpireQuiescentTemplate); val != 1 { if err := sysctl.SetSysctl(sysctlExpireQuiescentTemplate, 1); err != nil { return nil, fmt.Errorf("can't set sysctl %s: %v", sysctlExpireQuiescentTemplate, err) } } // Set the ip_forward sysctl we need for if val, _ := sysctl.GetSysctl(sysctlForward); val != 1 { if err := sysctl.SetSysctl(sysctlForward, 1); err != nil { return nil, fmt.Errorf("can't set sysctl %s: %v", sysctlForward, err) } } if strictARP { // Set the arp_ignore sysctl we need for if val, _ := sysctl.GetSysctl(sysctlArpIgnore); val != 1 { if err := sysctl.SetSysctl(sysctlArpIgnore, 1); err != nil { return nil, fmt.Errorf("can't set sysctl %s: %v", sysctlArpIgnore, err) } } // Set the arp_announce sysctl we need for if val, _ := sysctl.GetSysctl(sysctlArpAnnounce); val != 2 { if err := sysctl.SetSysctl(sysctlArpAnnounce, 2); err != nil { return nil, fmt.Errorf("can't set sysctl %s: %v", sysctlArpAnnounce, err) } } } // Generate the masquerade mark to use for SNAT rules. masqueradeValue := 1 << uint(masqueradeBit) masqueradeMark := fmt.Sprintf("%#08x/%#08x", masqueradeValue, masqueradeValue) if nodeIP == nil { klog.Warningf("invalid nodeIP, initializing kube-proxy with 127.0.0.1 as nodeIP") nodeIP = net.ParseIP("127.0.0.1") } isIPv6 := utilnet.IsIPv6(nodeIP) klog.V(2).Infof("nodeIP: %v, isIPv6: %v", nodeIP, isIPv6) if len(clusterCIDR) == 0 { klog.Warningf("clusterCIDR not specified, unable to distinguish between internal and external traffic") } else if utilnet.IsIPv6CIDRString(clusterCIDR) != isIPv6 { return nil, fmt.Errorf("clusterCIDR %s has incorrect IP version: expect isIPv6=%t", clusterCIDR, isIPv6) } if len(scheduler) == 0 { klog.Warningf("IPVS scheduler not specified, use %s by default", DefaultScheduler) scheduler = DefaultScheduler } healthChecker := healthcheck.NewServer(hostname, recorder, nil, nil) // use default implementations of deps proxier := &Proxier{ portsMap: make(map[utilproxy.LocalPort]utilproxy.Closeable), serviceMap: make(proxy.ServiceMap), serviceChanges: proxy.NewServiceChangeTracker(newServiceInfo, &isIPv6, recorder), endpointsMap: make(proxy.EndpointsMap), endpointsChanges: proxy.NewEndpointChangeTracker(hostname, nil, &isIPv6, recorder), syncPeriod: syncPeriod, minSyncPeriod: minSyncPeriod, excludeCIDRs: excludeCIDRs, iptables: ipt, masqueradeAll: masqueradeAll, masqueradeMark: masqueradeMark, exec: exec, clusterCIDR: clusterCIDR, hostname: hostname, nodeIP: nodeIP, portMapper: &listenPortOpener{}, recorder: recorder, healthChecker: healthChecker, healthzServer: healthzServer, ipvs: ipvs, ipvsScheduler: scheduler, ipGetter: &realIPGetter{nl: NewNetLinkHandle(isIPv6)}, iptablesData: bytes.NewBuffer(nil), filterChainsData: bytes.NewBuffer(nil), natChains: bytes.NewBuffer(nil), natRules: bytes.NewBuffer(nil), filterChains: bytes.NewBuffer(nil), filterRules: bytes.NewBuffer(nil), netlinkHandle: NewNetLinkHandle(isIPv6), ipset: ipset, nodePortAddresses: nodePortAddresses, networkInterfacer: utilproxy.RealNetwork{}, gracefuldeleteManager: NewGracefulTerminationManager(ipvs), } // initialize ipsetList with all sets we needed proxier.ipsetList = make(map[string]*IPSet) for _, is := range ipsetInfo { proxier.ipsetList[is.name] = NewIPSet(ipset, is.name, is.setType, isIPv6, is.comment) } burstSyncs := 2 klog.V(3).Infof("minSyncPeriod: %v, syncPeriod: %v, burstSyncs: %d", minSyncPeriod, syncPeriod, burstSyncs) proxier.syncRunner = async.NewBoundedFrequencyRunner("sync-runner", proxier.syncProxyRules, minSyncPeriod, syncPeriod, burstSyncs) proxier.gracefuldeleteManager.Run() return proxier, nil } // internal struct for string service information type serviceInfo struct { *proxy.BaseServiceInfo // The following fields are computed and stored for performance reasons. serviceNameString string } // returns a new proxy.ServicePort which abstracts a serviceInfo func newServiceInfo(port *v1.ServicePort, service *v1.Service, baseInfo *proxy.BaseServiceInfo) proxy.ServicePort { info := &serviceInfo{BaseServiceInfo: baseInfo} // Store the following for performance reasons. svcName := types.NamespacedName{Namespace: service.Namespace, Name: service.Name} svcPortName := proxy.ServicePortName{NamespacedName: svcName, Port: port.Name} info.serviceNameString = svcPortName.String() return info } // KernelHandler can handle the current installed kernel modules. type KernelHandler interface { GetModules() ([]string, error) } // LinuxKernelHandler implements KernelHandler interface. type LinuxKernelHandler struct { executor utilexec.Interface } // NewLinuxKernelHandler initializes LinuxKernelHandler with exec. func NewLinuxKernelHandler() *LinuxKernelHandler { return &LinuxKernelHandler{ executor: utilexec.New(), } } // GetModules returns all installed kernel modules. func (handle *LinuxKernelHandler) GetModules() ([]string, error) { // Check whether IPVS required kernel modules are built-in kernelVersion, ipvsModules, err := utilipvs.GetKernelVersionAndIPVSMods(handle.executor) if err != nil { return nil, err } builtinModsFilePath := fmt.Sprintf("/lib/modules/%s/modules.builtin", kernelVersion) b, err := ioutil.ReadFile(builtinModsFilePath) if err != nil { klog.Warningf("Failed to read file %s with error %v. You can ignore this message when kube-proxy is running inside container without mounting /lib/modules", builtinModsFilePath, err) } var bmods []string for _, module := range ipvsModules { if match, _ := regexp.Match(module+".ko", b); match { bmods = append(bmods, module) } } // Try to load IPVS required kernel modules using modprobe first for _, kmod := range ipvsModules { err := handle.executor.Command("modprobe", "--", kmod).Run() if err != nil { klog.Warningf("Failed to load kernel module %v with modprobe. "+ "You can ignore this message when kube-proxy is running inside container without mounting /lib/modules", kmod) } } // Find out loaded kernel modules out, err := handle.executor.Command("cut", "-f1", "-d", " ", "/proc/modules").CombinedOutput() if err != nil { return nil, err } mods := strings.Split(string(out), "\n") return append(mods, bmods...), nil } // CanUseIPVSProxier returns true if we can use the ipvs Proxier. // This is determined by checking if all the required kernel modules can be loaded. It may // return an error if it fails to get the kernel modules information without error, in which // case it will also return false. func CanUseIPVSProxier(handle KernelHandler, ipsetver IPSetVersioner) (bool, error) { mods, err := handle.GetModules() if err != nil { return false, fmt.Errorf("error getting installed ipvs required kernel modules: %v", err) } wantModules := sets.NewString() loadModules := sets.NewString() linuxKernelHandler := NewLinuxKernelHandler() _, ipvsModules, _ := utilipvs.GetKernelVersionAndIPVSMods(linuxKernelHandler.executor) wantModules.Insert(ipvsModules...) loadModules.Insert(mods...) modules := wantModules.Difference(loadModules).UnsortedList() var missingMods []string ConntrackiMissingCounter := 0 for _, mod := range modules { if strings.Contains(mod, "nf_conntrack") { ConntrackiMissingCounter++ } else { missingMods = append(missingMods, mod) } } if ConntrackiMissingCounter == 2 { missingMods = append(missingMods, "nf_conntrack_ipv4(or nf_conntrack for Linux kernel 4.19 and later)") } if len(missingMods) != 0 { return false, fmt.Errorf("IPVS proxier will not be used because the following required kernel modules are not loaded: %v", missingMods) } // Check ipset version versionString, err := ipsetver.GetVersion() if err != nil { return false, fmt.Errorf("error getting ipset version, error: %v", err) } if !checkMinVersion(versionString) { return false, fmt.Errorf("ipset version: %s is less than min required version: %s", versionString, MinIPSetCheckVersion) } return true, nil } // CleanupIptablesLeftovers removes all iptables rules and chains created by the Proxier // It returns true if an error was encountered. Errors are logged. func cleanupIptablesLeftovers(ipt utiliptables.Interface) (encounteredError bool) { // Unlink the iptables chains created by ipvs Proxier for _, jc := range iptablesJumpChain { args := []string{ "-m", "comment", "--comment", jc.comment, "-j", string(jc.to), } if err := ipt.DeleteRule(jc.table, jc.from, args...); err != nil { if !utiliptables.IsNotFoundError(err) { klog.Errorf("Error removing iptables rules in ipvs proxier: %v", err) encounteredError = true } } } // Flush and remove all of our chains. Flushing all chains before removing them also removes all links between chains first. for _, ch := range iptablesChains { if err := ipt.FlushChain(ch.table, ch.chain); err != nil { if !utiliptables.IsNotFoundError(err) { klog.Errorf("Error removing iptables rules in ipvs proxier: %v", err) encounteredError = true } } } // Remove all of our chains. for _, ch := range iptablesChains { if err := ipt.DeleteChain(ch.table, ch.chain); err != nil { if !utiliptables.IsNotFoundError(err) { klog.Errorf("Error removing iptables rules in ipvs proxier: %v", err) encounteredError = true } } } return encounteredError } // CleanupLeftovers clean up all ipvs and iptables rules created by ipvs Proxier. func CleanupLeftovers(ipvs utilipvs.Interface, ipt utiliptables.Interface, ipset utilipset.Interface, cleanupIPVS bool) (encounteredError bool) { if cleanupIPVS { // Return immediately when ipvs interface is nil - Probably initialization failed in somewhere. if ipvs == nil { return true } encounteredError = false err := ipvs.Flush() if err != nil { klog.Errorf("Error flushing IPVS rules: %v", err) encounteredError = true } } // Delete dummy interface created by ipvs Proxier. nl := NewNetLinkHandle(false) err := nl.DeleteDummyDevice(DefaultDummyDevice) if err != nil { klog.Errorf("Error deleting dummy device %s created by IPVS proxier: %v", DefaultDummyDevice, err) encounteredError = true } // Clear iptables created by ipvs Proxier. encounteredError = cleanupIptablesLeftovers(ipt) || encounteredError // Destroy ip sets created by ipvs Proxier. We should call it after cleaning up // iptables since we can NOT delete ip set which is still referenced by iptables. for _, set := range ipsetInfo { err = ipset.DestroySet(set.name) if err != nil { if !utilipset.IsNotFoundError(err) { klog.Errorf("Error removing ipset %s, error: %v", set.name, err) encounteredError = true } } } return encounteredError } // Sync is called to synchronize the proxier state to iptables and ipvs as soon as possible. func (proxier *Proxier) Sync() { proxier.syncRunner.Run() } // SyncLoop runs periodic work. This is expected to run as a goroutine or as the main loop of the app. It does not return. func (proxier *Proxier) SyncLoop() { // Update healthz timestamp at beginning in case Sync() never succeeds. if proxier.healthzServer != nil { proxier.healthzServer.UpdateTimestamp() } proxier.syncRunner.Loop(wait.NeverStop) } func (proxier *Proxier) setInitialized(value bool) { var initialized int32 if value { initialized = 1 } atomic.StoreInt32(&proxier.initialized, initialized) } func (proxier *Proxier) isInitialized() bool { return atomic.LoadInt32(&proxier.initialized) > 0 } // OnServiceAdd is called whenever creation of new service object is observed. func (proxier *Proxier) OnServiceAdd(service *v1.Service) { proxier.OnServiceUpdate(nil, service) } // OnServiceUpdate is called whenever modification of an existing service object is observed. func (proxier *Proxier) OnServiceUpdate(oldService, service *v1.Service) { if proxier.serviceChanges.Update(oldService, service) && proxier.isInitialized() { proxier.syncRunner.Run() } } // OnServiceDelete is called whenever deletion of an existing service object is observed. func (proxier *Proxier) OnServiceDelete(service *v1.Service) { proxier.OnServiceUpdate(service, nil) } // OnServiceSynced is called once all the initial event handlers were called and the state is fully propagated to local cache. func (proxier *Proxier) OnServiceSynced() { proxier.mu.Lock() proxier.servicesSynced = true proxier.setInitialized(proxier.servicesSynced && proxier.endpointsSynced) proxier.mu.Unlock() // Sync unconditionally - this is called once per lifetime. proxier.syncProxyRules() } // OnEndpointsAdd is called whenever creation of new endpoints object is observed. func (proxier *Proxier) OnEndpointsAdd(endpoints *v1.Endpoints) { proxier.OnEndpointsUpdate(nil, endpoints) } // OnEndpointsUpdate is called whenever modification of an existing endpoints object is observed. func (proxier *Proxier) OnEndpointsUpdate(oldEndpoints, endpoints *v1.Endpoints) { if proxier.endpointsChanges.Update(oldEndpoints, endpoints) && proxier.isInitialized() { proxier.syncRunner.Run() } } // OnEndpointsDelete is called whenever deletion of an existing endpoints object is observed. func (proxier *Proxier) OnEndpointsDelete(endpoints *v1.Endpoints) { proxier.OnEndpointsUpdate(endpoints, nil) } // OnEndpointsSynced is called once all the initial event handlers were called and the state is fully propagated to local cache. func (proxier *Proxier) OnEndpointsSynced() { proxier.mu.Lock() proxier.endpointsSynced = true proxier.setInitialized(proxier.servicesSynced && proxier.endpointsSynced) proxier.mu.Unlock() // Sync unconditionally - this is called once per lifetime. proxier.syncProxyRules() } // EntryInvalidErr indicates if an ipset entry is invalid or not const EntryInvalidErr = "error adding entry %s to ipset %s" // This is where all of the ipvs calls happen. // assumes proxier.mu is held func (proxier *Proxier) syncProxyRules() { proxier.mu.Lock() defer proxier.mu.Unlock() start := time.Now() defer func() { metrics.SyncProxyRulesLatency.Observe(metrics.SinceInSeconds(start)) metrics.DeprecatedSyncProxyRulesLatency.Observe(metrics.SinceInMicroseconds(start)) klog.V(4).Infof("syncProxyRules took %v", time.Since(start)) }() // don't sync rules till we've received services and endpoints if !proxier.endpointsSynced || !proxier.servicesSynced { klog.V(2).Info("Not syncing ipvs rules until Services and Endpoints have been received from master") return } // We assume that if this was called, we really want to sync them, // even if nothing changed in the meantime. In other words, callers are // responsible for detecting no-op changes and not calling this function. serviceUpdateResult := proxy.UpdateServiceMap(proxier.serviceMap, proxier.serviceChanges) endpointUpdateResult := proxy.UpdateEndpointsMap(proxier.endpointsMap, proxier.endpointsChanges) staleServices := serviceUpdateResult.UDPStaleClusterIP // merge stale services gathered from updateEndpointsMap for _, svcPortName := range endpointUpdateResult.StaleServiceNames { if svcInfo, ok := proxier.serviceMap[svcPortName]; ok && svcInfo != nil && svcInfo.GetProtocol() == v1.ProtocolUDP { klog.V(2).Infof("Stale udp service %v -> %s", svcPortName, svcInfo.ClusterIPString()) staleServices.Insert(svcInfo.ClusterIPString()) for _, extIP := range svcInfo.ExternalIPStrings() { staleServices.Insert(extIP) } } } klog.V(3).Infof("Syncing ipvs Proxier rules") // Begin install iptables // Reset all buffers used later. // This is to avoid memory reallocations and thus improve performance. proxier.natChains.Reset() proxier.natRules.Reset() proxier.filterChains.Reset() proxier.filterRules.Reset() // Write table headers. writeLine(proxier.filterChains, "*filter") writeLine(proxier.natChains, "*nat") proxier.createAndLinkeKubeChain() // make sure dummy interface exists in the system where ipvs Proxier will bind service address on it _, err := proxier.netlinkHandle.EnsureDummyDevice(DefaultDummyDevice) if err != nil { klog.Errorf("Failed to create dummy interface: %s, error: %v", DefaultDummyDevice, err) return } // make sure ip sets exists in the system. for _, set := range proxier.ipsetList { if err := ensureIPSet(set); err != nil { return } set.resetEntries() } // Accumulate the set of local ports that we will be holding open once this update is complete replacementPortsMap := map[utilproxy.LocalPort]utilproxy.Closeable{} // activeIPVSServices represents IPVS service successfully created in this round of sync activeIPVSServices := map[string]bool{} // currentIPVSServices represent IPVS services listed from the system currentIPVSServices := make(map[string]*utilipvs.VirtualServer) // activeBindAddrs represents ip address successfully bind to DefaultDummyDevice in this round of sync activeBindAddrs := map[string]bool{} // Build IPVS rules for each service. for svcName, svc := range proxier.serviceMap { svcInfo, ok := svc.(*serviceInfo) if !ok { klog.Errorf("Failed to cast serviceInfo %q", svcName.String()) continue } protocol := strings.ToLower(string(svcInfo.Protocol)) // Precompute svcNameString; with many services the many calls // to ServicePortName.String() show up in CPU profiles. svcNameString := svcName.String() // Handle traffic that loops back to the originator with SNAT. for _, e := range proxier.endpointsMap[svcName] { ep, ok := e.(*proxy.BaseEndpointInfo) if !ok { klog.Errorf("Failed to cast BaseEndpointInfo %q", e.String()) continue } if !ep.IsLocal { continue } epIP := ep.IP() epPort, err := ep.Port() // Error parsing this endpoint has been logged. Skip to next endpoint. if epIP == "" || err != nil { continue } entry := &utilipset.Entry{ IP: epIP, Port: epPort, Protocol: protocol, IP2: epIP, SetType: utilipset.HashIPPortIP, } if valid := proxier.ipsetList[kubeLoopBackIPSet].validateEntry(entry); !valid { klog.Errorf("%s", fmt.Sprintf(EntryInvalidErr, entry, proxier.ipsetList[kubeLoopBackIPSet].Name)) continue } proxier.ipsetList[kubeLoopBackIPSet].activeEntries.Insert(entry.String()) } // Capture the clusterIP. // ipset call entry := &utilipset.Entry{ IP: svcInfo.ClusterIP.String(), Port: svcInfo.Port, Protocol: protocol, SetType: utilipset.HashIPPort, } // add service Cluster IP:Port to kubeServiceAccess ip set for the purpose of solving hairpin. // proxier.kubeServiceAccessSet.activeEntries.Insert(entry.String()) if valid := proxier.ipsetList[kubeClusterIPSet].validateEntry(entry); !valid { klog.Errorf("%s", fmt.Sprintf(EntryInvalidErr, entry, proxier.ipsetList[kubeClusterIPSet].Name)) continue } proxier.ipsetList[kubeClusterIPSet].activeEntries.Insert(entry.String()) // ipvs call serv := &utilipvs.VirtualServer{ Address: svcInfo.ClusterIP, Port: uint16(svcInfo.Port), Protocol: string(svcInfo.Protocol), Scheduler: proxier.ipvsScheduler, } // Set session affinity flag and timeout for IPVS service if svcInfo.SessionAffinityType == v1.ServiceAffinityClientIP { serv.Flags |= utilipvs.FlagPersistent serv.Timeout = uint32(svcInfo.StickyMaxAgeSeconds) } // We need to bind ClusterIP to dummy interface, so set `bindAddr` parameter to `true` in syncService() if err := proxier.syncService(svcNameString, serv, true); err == nil { activeIPVSServices[serv.String()] = true activeBindAddrs[serv.Address.String()] = true // ExternalTrafficPolicy only works for NodePort and external LB traffic, does not affect ClusterIP // So we still need clusterIP rules in onlyNodeLocalEndpoints mode. if err := proxier.syncEndpoint(svcName, false, serv); err != nil { klog.Errorf("Failed to sync endpoint for service: %v, err: %v", serv, err) } } else { klog.Errorf("Failed to sync service: %v, err: %v", serv, err) } // Capture externalIPs. for _, externalIP := range svcInfo.ExternalIPs { if local, err := utilproxy.IsLocalIP(externalIP); err != nil { klog.Errorf("can't determine if IP is local, assuming not: %v", err) // We do not start listening on SCTP ports, according to our agreement in the // SCTP support KEP } else if local && (svcInfo.GetProtocol() != v1.ProtocolSCTP) { lp := utilproxy.LocalPort{ Description: "externalIP for " + svcNameString, IP: externalIP, Port: svcInfo.Port, Protocol: protocol, } if proxier.portsMap[lp] != nil { klog.V(4).Infof("Port %s was open before and is still needed", lp.String()) replacementPortsMap[lp] = proxier.portsMap[lp] } else { socket, err := proxier.portMapper.OpenLocalPort(&lp) if err != nil { msg := fmt.Sprintf("can't open %s, skipping this externalIP: %v", lp.String(), err) proxier.recorder.Eventf( &v1.ObjectReference{ Kind: "Node", Name: proxier.hostname, UID: types.UID(proxier.hostname), Namespace: "", }, v1.EventTypeWarning, err.Error(), msg) klog.Error(msg) continue } replacementPortsMap[lp] = socket } } // We're holding the port, so it's OK to install IPVS rules. // ipset call entry := &utilipset.Entry{ IP: externalIP, Port: svcInfo.Port, Protocol: protocol, SetType: utilipset.HashIPPort, } // We have to SNAT packets to external IPs. if valid := proxier.ipsetList[kubeExternalIPSet].validateEntry(entry); !valid { klog.Errorf("%s", fmt.Sprintf(EntryInvalidErr, entry, proxier.ipsetList[kubeExternalIPSet].Name)) continue } proxier.ipsetList[kubeExternalIPSet].activeEntries.Insert(entry.String()) // ipvs call serv := &utilipvs.VirtualServer{ Address: net.ParseIP(externalIP), Port: uint16(svcInfo.Port), Protocol: string(svcInfo.Protocol), Scheduler: proxier.ipvsScheduler, } if svcInfo.SessionAffinityType == v1.ServiceAffinityClientIP { serv.Flags |= utilipvs.FlagPersistent serv.Timeout = uint32(svcInfo.StickyMaxAgeSeconds) } if err := proxier.syncService(svcNameString, serv, true); err == nil { activeIPVSServices[serv.String()] = true activeBindAddrs[serv.Address.String()] = true if err := proxier.syncEndpoint(svcName, false, serv); err != nil { klog.Errorf("Failed to sync endpoint for service: %v, err: %v", serv, err) } } else { klog.Errorf("Failed to sync service: %v, err: %v", serv, err) } } // Capture load-balancer ingress. for _, ingress := range svcInfo.LoadBalancerStatus.Ingress { if ingress.IP != "" { // ipset call entry = &utilipset.Entry{ IP: ingress.IP, Port: svcInfo.Port, Protocol: protocol, SetType: utilipset.HashIPPort, } // add service load balancer ingressIP:Port to kubeServiceAccess ip set for the purpose of solving hairpin. // proxier.kubeServiceAccessSet.activeEntries.Insert(entry.String()) // If we are proxying globally, we need to masquerade in case we cross nodes. // If we are proxying only locally, we can retain the source IP. if valid := proxier.ipsetList[kubeLoadBalancerSet].validateEntry(entry); !valid { klog.Errorf("%s", fmt.Sprintf(EntryInvalidErr, entry, proxier.ipsetList[kubeLoadBalancerSet].Name)) continue } proxier.ipsetList[kubeLoadBalancerSet].activeEntries.Insert(entry.String()) // insert loadbalancer entry to lbIngressLocalSet if service externaltrafficpolicy=local if svcInfo.OnlyNodeLocalEndpoints { if valid := proxier.ipsetList[kubeLoadBalancerLocalSet].validateEntry(entry); !valid { klog.Errorf("%s", fmt.Sprintf(EntryInvalidErr, entry, proxier.ipsetList[kubeLoadBalancerLocalSet].Name)) continue } proxier.ipsetList[kubeLoadBalancerLocalSet].activeEntries.Insert(entry.String()) } if len(svcInfo.LoadBalancerSourceRanges) != 0 { // The service firewall rules are created based on ServiceSpec.loadBalancerSourceRanges field. // This currently works for loadbalancers that preserves source ips. // For loadbalancers which direct traffic to service NodePort, the firewall rules will not apply. if valid := proxier.ipsetList[kubeLoadbalancerFWSet].validateEntry(entry); !valid { klog.Errorf("%s", fmt.Sprintf(EntryInvalidErr, entry, proxier.ipsetList[kubeLoadbalancerFWSet].Name)) continue } proxier.ipsetList[kubeLoadbalancerFWSet].activeEntries.Insert(entry.String()) allowFromNode := false for _, src := range svcInfo.LoadBalancerSourceRanges { // ipset call entry = &utilipset.Entry{ IP: ingress.IP, Port: svcInfo.Port, Protocol: protocol, Net: src, SetType: utilipset.HashIPPortNet, } // enumerate all white list source cidr if valid := proxier.ipsetList[kubeLoadBalancerSourceCIDRSet].validateEntry(entry); !valid { klog.Errorf("%s", fmt.Sprintf(EntryInvalidErr, entry, proxier.ipsetList[kubeLoadBalancerSourceCIDRSet].Name)) continue } proxier.ipsetList[kubeLoadBalancerSourceCIDRSet].activeEntries.Insert(entry.String()) // ignore error because it has been validated _, cidr, _ := net.ParseCIDR(src) if cidr.Contains(proxier.nodeIP) { allowFromNode = true } } // generally, ip route rule was added to intercept request to loadbalancer vip from the // loadbalancer's backend hosts. In this case, request will not hit the loadbalancer but loop back directly. // Need to add the following rule to allow request on host. if allowFromNode { entry = &utilipset.Entry{ IP: ingress.IP, Port: svcInfo.Port, Protocol: protocol, IP2: ingress.IP, SetType: utilipset.HashIPPortIP, } // enumerate all white list source ip if valid := proxier.ipsetList[kubeLoadBalancerSourceIPSet].validateEntry(entry); !valid { klog.Errorf("%s", fmt.Sprintf(EntryInvalidErr, entry, proxier.ipsetList[kubeLoadBalancerSourceIPSet].Name)) continue } proxier.ipsetList[kubeLoadBalancerSourceIPSet].activeEntries.Insert(entry.String()) } } // ipvs call serv := &utilipvs.VirtualServer{ Address: net.ParseIP(ingress.IP), Port: uint16(svcInfo.Port), Protocol: string(svcInfo.Protocol), Scheduler: proxier.ipvsScheduler, } if svcInfo.SessionAffinityType == v1.ServiceAffinityClientIP { serv.Flags |= utilipvs.FlagPersistent serv.Timeout = uint32(svcInfo.StickyMaxAgeSeconds) } if err := proxier.syncService(svcNameString, serv, true); err == nil { activeIPVSServices[serv.String()] = true activeBindAddrs[serv.Address.String()] = true if err := proxier.syncEndpoint(svcName, svcInfo.OnlyNodeLocalEndpoints, serv); err != nil { klog.Errorf("Failed to sync endpoint for service: %v, err: %v", serv, err) } } else { klog.Errorf("Failed to sync service: %v, err: %v", serv, err) } } } if svcInfo.NodePort != 0 { addresses, err := utilproxy.GetNodeAddresses(proxier.nodePortAddresses, proxier.networkInterfacer) if err != nil { klog.Errorf("Failed to get node ip address matching nodeport cidr: %v", err) continue } var lps []utilproxy.LocalPort for address := range addresses { lp := utilproxy.LocalPort{ Description: "nodePort for " + svcNameString, IP: address, Port: svcInfo.NodePort, Protocol: protocol, } if utilproxy.IsZeroCIDR(address) { // Empty IP address means all lp.IP = "" lps = append(lps, lp) // If we encounter a zero CIDR, then there is no point in processing the rest of the addresses. break } lps = append(lps, lp) } // For ports on node IPs, open the actual port and hold it. for _, lp := range lps { if proxier.portsMap[lp] != nil { klog.V(4).Infof("Port %s was open before and is still needed", lp.String()) replacementPortsMap[lp] = proxier.portsMap[lp] // We do not start listening on SCTP ports, according to our agreement in the // SCTP support KEP } else if svcInfo.GetProtocol() != v1.ProtocolSCTP { socket, err := proxier.portMapper.OpenLocalPort(&lp) if err != nil { klog.Errorf("can't open %s, skipping this nodePort: %v", lp.String(), err) continue } if lp.Protocol == "udp" { isIPv6 := utilnet.IsIPv6(svcInfo.ClusterIP) conntrack.ClearEntriesForPort(proxier.exec, lp.Port, isIPv6, v1.ProtocolUDP) } replacementPortsMap[lp] = socket } // We're holding the port, so it's OK to install ipvs rules. } // Nodeports need SNAT, unless they're local. // ipset call entry = &utilipset.Entry{ // No need to provide ip info Port: svcInfo.NodePort, Protocol: protocol, SetType: utilipset.BitmapPort, } var nodePortSet *IPSet switch protocol { case "tcp": nodePortSet = proxier.ipsetList[kubeNodePortSetTCP] case "udp": nodePortSet = proxier.ipsetList[kubeNodePortSetUDP] case "sctp": nodePortSet = proxier.ipsetList[kubeNodePortSetSCTP] default: // It should never hit klog.Errorf("Unsupported protocol type: %s", protocol) } if nodePortSet != nil { if valid := nodePortSet.validateEntry(entry); !valid { klog.Errorf("%s", fmt.Sprintf(EntryInvalidErr, entry, nodePortSet.Name)) continue } nodePortSet.activeEntries.Insert(entry.String()) } // Add externaltrafficpolicy=local type nodeport entry if svcInfo.OnlyNodeLocalEndpoints { var nodePortLocalSet *IPSet switch protocol { case "tcp": nodePortLocalSet = proxier.ipsetList[kubeNodePortLocalSetTCP] case "udp": nodePortLocalSet = proxier.ipsetList[kubeNodePortLocalSetUDP] case "sctp": nodePortLocalSet = proxier.ipsetList[kubeNodePortLocalSetSCTP] default: // It should never hit klog.Errorf("Unsupported protocol type: %s", protocol) } if nodePortLocalSet != nil { if valid := nodePortLocalSet.validateEntry(entry); !valid { klog.Errorf("%s", fmt.Sprintf(EntryInvalidErr, entry, nodePortLocalSet.Name)) continue } nodePortLocalSet.activeEntries.Insert(entry.String()) } } // Build ipvs kernel routes for each node ip address var nodeIPs []net.IP for address := range addresses { if !utilproxy.IsZeroCIDR(address) { nodeIPs = append(nodeIPs, net.ParseIP(address)) continue } // zero cidr nodeIPs, err = proxier.ipGetter.NodeIPs() if err != nil { klog.Errorf("Failed to list all node IPs from host, err: %v", err) } } for _, nodeIP := range nodeIPs { // ipvs call serv := &utilipvs.VirtualServer{ Address: nodeIP, Port: uint16(svcInfo.NodePort), Protocol: string(svcInfo.Protocol), Scheduler: proxier.ipvsScheduler, } if svcInfo.SessionAffinityType == v1.ServiceAffinityClientIP { serv.Flags |= utilipvs.FlagPersistent serv.Timeout = uint32(svcInfo.StickyMaxAgeSeconds) } // There is no need to bind Node IP to dummy interface, so set parameter `bindAddr` to `false`. if err := proxier.syncService(svcNameString, serv, false); err == nil { activeIPVSServices[serv.String()] = true if err := proxier.syncEndpoint(svcName, svcInfo.OnlyNodeLocalEndpoints, serv); err != nil { klog.Errorf("Failed to sync endpoint for service: %v, err: %v", serv, err) } } else { klog.Errorf("Failed to sync service: %v, err: %v", serv, err) } } } } // sync ipset entries for _, set := range proxier.ipsetList { set.syncIPSetEntries() } // Tail call iptables rules for ipset, make sure only call iptables once // in a single loop per ip set. proxier.writeIptablesRules() // Sync iptables rules. // NOTE: NoFlushTables is used so we don't flush non-kubernetes chains in the table. proxier.iptablesData.Reset() proxier.iptablesData.Write(proxier.natChains.Bytes()) proxier.iptablesData.Write(proxier.natRules.Bytes()) proxier.iptablesData.Write(proxier.filterChains.Bytes()) proxier.iptablesData.Write(proxier.filterRules.Bytes()) klog.V(5).Infof("Restoring iptables rules: %s", proxier.iptablesData.Bytes()) err = proxier.iptables.RestoreAll(proxier.iptablesData.Bytes(), utiliptables.NoFlushTables, utiliptables.RestoreCounters) if err != nil { klog.Errorf("Failed to execute iptables-restore: %v\nRules:\n%s", err, proxier.iptablesData.Bytes()) // Revert new local ports. utilproxy.RevertPorts(replacementPortsMap, proxier.portsMap) return } for _, lastChangeTriggerTime := range endpointUpdateResult.LastChangeTriggerTimes { latency := metrics.SinceInSeconds(lastChangeTriggerTime) metrics.NetworkProgrammingLatency.Observe(latency) klog.V(4).Infof("Network programming took %f seconds", latency) } // Close old local ports and save new ones. for k, v := range proxier.portsMap { if replacementPortsMap[k] == nil { v.Close() } } proxier.portsMap = replacementPortsMap // Get legacy bind address // currentBindAddrs represents ip addresses bind to DefaultDummyDevice from the system currentBindAddrs, err := proxier.netlinkHandle.ListBindAddress(DefaultDummyDevice) if err != nil { klog.Errorf("Failed to get bind address, err: %v", err) } legacyBindAddrs := proxier.getLegacyBindAddr(activeBindAddrs, currentBindAddrs) // Clean up legacy IPVS services and unbind addresses appliedSvcs, err := proxier.ipvs.GetVirtualServers() if err == nil { for _, appliedSvc := range appliedSvcs { currentIPVSServices[appliedSvc.String()] = appliedSvc } } else { klog.Errorf("Failed to get ipvs service, err: %v", err) } proxier.cleanLegacyService(activeIPVSServices, currentIPVSServices, legacyBindAddrs) // Update healthz timestamp if proxier.healthzServer != nil { proxier.healthzServer.UpdateTimestamp() } metrics.SyncProxyRulesLastTimestamp.SetToCurrentTime() // Update healthchecks. The endpoints list might include services that are // not "OnlyLocal", but the services list will not, and the healthChecker // will just drop those endpoints. if err := proxier.healthChecker.SyncServices(serviceUpdateResult.HCServiceNodePorts); err != nil { klog.Errorf("Error syncing healthcheck services: %v", err) } if err := proxier.healthChecker.SyncEndpoints(endpointUpdateResult.HCEndpointsLocalIPSize); err != nil { klog.Errorf("Error syncing healthcheck endpoints: %v", err) } // Finish housekeeping. // TODO: these could be made more consistent. for _, svcIP := range staleServices.UnsortedList() { if err := conntrack.ClearEntriesForIP(proxier.exec, svcIP, v1.ProtocolUDP); err != nil { klog.Errorf("Failed to delete stale service IP %s connections, error: %v", svcIP, err) } } proxier.deleteEndpointConnections(endpointUpdateResult.StaleEndpoints) } // writeIptablesRules write all iptables rules to proxier.natRules or proxier.FilterRules that ipvs proxier needed // according to proxier.ipsetList information and the ipset match relationship that `ipsetWithIptablesChain` specified. // some ipset(kubeClusterIPSet for example) have particular match rules and iptables jump relation should be sync separately. func (proxier *Proxier) writeIptablesRules() { // We are creating those slices ones here to avoid memory reallocations // in every loop. Note that reuse the memory, instead of doing: // slice = // you should always do one of the below: // slice = slice[:0] // and then append to it // slice = append(slice[:0], ...) // To avoid growing this slice, we arbitrarily set its size to 64, // there is never more than that many arguments for a single line. // Note that even if we go over 64, it will still be correct - it // is just for efficiency, not correctness. args := make([]string, 64) for _, set := range ipsetWithIptablesChain { if _, find := proxier.ipsetList[set.name]; find && !proxier.ipsetList[set.name].isEmpty() { args = append(args[:0], "-A", set.from) if set.protocolMatch != "" { args = append(args, "-p", set.protocolMatch) } args = append(args, "-m", "comment", "--comment", proxier.ipsetList[set.name].getComment(), "-m", "set", "--match-set", set.name, set.matchType, ) writeLine(proxier.natRules, append(args, "-j", set.to)...) } } if !proxier.ipsetList[kubeClusterIPSet].isEmpty() { args = append(args[:0], "-A", string(kubeServicesChain), "-m", "comment", "--comment", proxier.ipsetList[kubeClusterIPSet].getComment(), "-m", "set", "--match-set", kubeClusterIPSet, ) if proxier.masqueradeAll { writeLine(proxier.natRules, append(args, "dst,dst", "-j", string(KubeMarkMasqChain))...) } else if len(proxier.clusterCIDR) > 0 { // This masquerades off-cluster traffic to a service VIP. The idea // is that you can establish a static route for your Service range, // routing to any node, and that node will bridge into the Service // for you. Since that might bounce off-node, we masquerade here. // If/when we support "Local" policy for VIPs, we should update this. writeLine(proxier.natRules, append(args, "dst,dst", "! -s", proxier.clusterCIDR, "-j", string(KubeMarkMasqChain))...) } else { // Masquerade all OUTPUT traffic coming from a service ip. // The kube dummy interface has all service VIPs assigned which // results in the service VIP being picked as the source IP to reach // a VIP. This leads to a connection from VIP: to // VIP:. // Always masquerading OUTPUT (node-originating) traffic with a VIP // source ip and service port destination fixes the outgoing connections. writeLine(proxier.natRules, append(args, "src,dst", "-j", string(KubeMarkMasqChain))...) } } if !proxier.ipsetList[kubeExternalIPSet].isEmpty() { // Build masquerade rules for packets to external IPs. args = append(args[:0], "-A", string(kubeServicesChain), "-m", "comment", "--comment", proxier.ipsetList[kubeExternalIPSet].getComment(), "-m", "set", "--match-set", kubeExternalIPSet, "dst,dst", ) writeLine(proxier.natRules, append(args, "-j", string(KubeMarkMasqChain))...) // Allow traffic for external IPs that does not come from a bridge (i.e. not from a container) // nor from a local process to be forwarded to the service. // This rule roughly translates to "all traffic from off-machine". // This is imperfect in the face of network plugins that might not use a bridge, but we can revisit that later. externalTrafficOnlyArgs := append(args, "-m", "physdev", "!", "--physdev-is-in", "-m", "addrtype", "!", "--src-type", "LOCAL") writeLine(proxier.natRules, append(externalTrafficOnlyArgs, "-j", "ACCEPT")...) dstLocalOnlyArgs := append(args, "-m", "addrtype", "--dst-type", "LOCAL") // Allow traffic bound for external IPs that happen to be recognized as local IPs to stay local. // This covers cases like GCE load-balancers which get added to the local routing table. writeLine(proxier.natRules, append(dstLocalOnlyArgs, "-j", "ACCEPT")...) } // -A KUBE-SERVICES -m addrtype --dst-type LOCAL -j KUBE-NODE-PORT args = append(args[:0], "-A", string(kubeServicesChain), "-m", "addrtype", "--dst-type", "LOCAL", ) writeLine(proxier.natRules, append(args, "-j", string(KubeNodePortChain))...) // mark drop for KUBE-LOAD-BALANCER writeLine(proxier.natRules, []string{ "-A", string(KubeLoadBalancerChain), "-j", string(KubeMarkMasqChain), }...) // mark drop for KUBE-FIRE-WALL writeLine(proxier.natRules, []string{ "-A", string(KubeFireWallChain), "-j", string(KubeMarkDropChain), }...) // Accept all traffic with destination of ipvs virtual service, in case other iptables rules // block the traffic, that may result in ipvs rules invalid. // Those rules must be in the end of KUBE-SERVICE chain proxier.acceptIPVSTraffic() // If the masqueradeMark has been added then we want to forward that same // traffic, this allows NodePort traffic to be forwarded even if the default // FORWARD policy is not accept. writeLine(proxier.filterRules, "-A", string(KubeForwardChain), "-m", "comment", "--comment", `"kubernetes forwarding rules"`, "-m", "mark", "--mark", proxier.masqueradeMark, "-j", "ACCEPT", ) // The following rules can only be set if clusterCIDR has been defined. if len(proxier.clusterCIDR) != 0 { // The following two rules ensure the traffic after the initial packet // accepted by the "kubernetes forwarding rules" rule above will be // accepted, to be as specific as possible the traffic must be sourced // or destined to the clusterCIDR (to/from a pod). writeLine(proxier.filterRules, "-A", string(KubeForwardChain), "-s", proxier.clusterCIDR, "-m", "comment", "--comment", `"kubernetes forwarding conntrack pod source rule"`, "-m", "conntrack", "--ctstate", "RELATED,ESTABLISHED", "-j", "ACCEPT", ) writeLine(proxier.filterRules, "-A", string(KubeForwardChain), "-m", "comment", "--comment", `"kubernetes forwarding conntrack pod destination rule"`, "-d", proxier.clusterCIDR, "-m", "conntrack", "--ctstate", "RELATED,ESTABLISHED", "-j", "ACCEPT", ) } // Write the end-of-table markers. writeLine(proxier.filterRules, "COMMIT") writeLine(proxier.natRules, "COMMIT") } func (proxier *Proxier) acceptIPVSTraffic() { sets := []string{kubeClusterIPSet, kubeLoadBalancerSet} for _, set := range sets { var matchType string if !proxier.ipsetList[set].isEmpty() { switch proxier.ipsetList[set].SetType { case utilipset.BitmapPort: matchType = "dst" default: matchType = "dst,dst" } writeLine(proxier.natRules, []string{ "-A", string(kubeServicesChain), "-m", "set", "--match-set", set, matchType, "-j", "ACCEPT", }...) } } } // createAndLinkeKubeChain create all kube chains that ipvs proxier need and write basic link. func (proxier *Proxier) createAndLinkeKubeChain() { existingFilterChains := proxier.getExistingChains(proxier.filterChainsData, utiliptables.TableFilter) existingNATChains := proxier.getExistingChains(proxier.iptablesData, utiliptables.TableNAT) // Make sure we keep stats for the top-level chains for _, ch := range iptablesChains { if _, err := proxier.iptables.EnsureChain(ch.table, ch.chain); err != nil { klog.Errorf("Failed to ensure that %s chain %s exists: %v", ch.table, ch.chain, err) return } if ch.table == utiliptables.TableNAT { if chain, ok := existingNATChains[ch.chain]; ok { writeBytesLine(proxier.natChains, chain) } else { writeLine(proxier.natChains, utiliptables.MakeChainLine(kubePostroutingChain)) } } else { if chain, ok := existingFilterChains[KubeForwardChain]; ok { writeBytesLine(proxier.filterChains, chain) } else { writeLine(proxier.filterChains, utiliptables.MakeChainLine(KubeForwardChain)) } } } for _, jc := range iptablesJumpChain { args := []string{"-m", "comment", "--comment", jc.comment, "-j", string(jc.to)} if _, err := proxier.iptables.EnsureRule(utiliptables.Prepend, jc.table, jc.from, args...); err != nil { klog.Errorf("Failed to ensure that %s chain %s jumps to %s: %v", jc.table, jc.from, jc.to, err) } } // Install the kubernetes-specific postrouting rules. We use a whole chain for // this so that it is easier to flush and change, for example if the mark // value should ever change. writeLine(proxier.natRules, []string{ "-A", string(kubePostroutingChain), "-m", "comment", "--comment", `"kubernetes service traffic requiring SNAT"`, "-m", "mark", "--mark", proxier.masqueradeMark, "-j", "MASQUERADE", }...) // Install the kubernetes-specific masquerade mark rule. We use a whole chain for // this so that it is easier to flush and change, for example if the mark // value should ever change. writeLine(proxier.natRules, []string{ "-A", string(KubeMarkMasqChain), "-j", "MARK", "--set-xmark", proxier.masqueradeMark, }...) } // getExistingChains get iptables-save output so we can check for existing chains and rules. // This will be a map of chain name to chain with rules as stored in iptables-save/iptables-restore // Result may SHARE memory with contents of buffer. func (proxier *Proxier) getExistingChains(buffer *bytes.Buffer, table utiliptables.Table) map[utiliptables.Chain][]byte { buffer.Reset() err := proxier.iptables.SaveInto(table, buffer) if err != nil { // if we failed to get any rules klog.Errorf("Failed to execute iptables-save, syncing all rules: %v", err) } else { // otherwise parse the output return utiliptables.GetChainLines(table, buffer.Bytes()) } return nil } // After a UDP endpoint has been removed, we must flush any pending conntrack entries to it, or else we // risk sending more traffic to it, all of which will be lost (because UDP). // This assumes the proxier mutex is held func (proxier *Proxier) deleteEndpointConnections(connectionMap []proxy.ServiceEndpoint) { for _, epSvcPair := range connectionMap { if svcInfo, ok := proxier.serviceMap[epSvcPair.ServicePortName]; ok && svcInfo.GetProtocol() == v1.ProtocolUDP { endpointIP := utilproxy.IPPart(epSvcPair.Endpoint) err := conntrack.ClearEntriesForNAT(proxier.exec, svcInfo.ClusterIPString(), endpointIP, v1.ProtocolUDP) if err != nil { klog.Errorf("Failed to delete %s endpoint connections, error: %v", epSvcPair.ServicePortName.String(), err) } for _, extIP := range svcInfo.ExternalIPStrings() { err := conntrack.ClearEntriesForNAT(proxier.exec, extIP, endpointIP, v1.ProtocolUDP) if err != nil { klog.Errorf("Failed to delete %s endpoint connections for externalIP %s, error: %v", epSvcPair.ServicePortName.String(), extIP, err) } } for _, lbIP := range svcInfo.LoadBalancerIPStrings() { err := conntrack.ClearEntriesForNAT(proxier.exec, lbIP, endpointIP, v1.ProtocolUDP) if err != nil { klog.Errorf("Failed to delete %s endpoint connections for LoabBalancerIP %s, error: %v", epSvcPair.ServicePortName.String(), lbIP, err) } } } } } func (proxier *Proxier) syncService(svcName string, vs *utilipvs.VirtualServer, bindAddr bool) error { appliedVirtualServer, _ := proxier.ipvs.GetVirtualServer(vs) if appliedVirtualServer == nil || !appliedVirtualServer.Equal(vs) { if appliedVirtualServer == nil { // IPVS service is not found, create a new service klog.V(3).Infof("Adding new service %q %s:%d/%s", svcName, vs.Address, vs.Port, vs.Protocol) if err := proxier.ipvs.AddVirtualServer(vs); err != nil { klog.Errorf("Failed to add IPVS service %q: %v", svcName, err) return err } } else { // IPVS service was changed, update the existing one // During updates, service VIP will not go down klog.V(3).Infof("IPVS service %s was changed", svcName) if err := proxier.ipvs.UpdateVirtualServer(vs); err != nil { klog.Errorf("Failed to update IPVS service, err:%v", err) return err } } } // bind service address to dummy interface even if service not changed, // in case that service IP was removed by other processes if bindAddr { klog.V(4).Infof("Bind addr %s", vs.Address.String()) _, err := proxier.netlinkHandle.EnsureAddressBind(vs.Address.String(), DefaultDummyDevice) if err != nil { klog.Errorf("Failed to bind service address to dummy device %q: %v", svcName, err) return err } } return nil } func (proxier *Proxier) syncEndpoint(svcPortName proxy.ServicePortName, onlyNodeLocalEndpoints bool, vs *utilipvs.VirtualServer) error { appliedVirtualServer, err := proxier.ipvs.GetVirtualServer(vs) if err != nil || appliedVirtualServer == nil { klog.Errorf("Failed to get IPVS service, error: %v", err) return err } // curEndpoints represents IPVS destinations listed from current system. curEndpoints := sets.NewString() // newEndpoints represents Endpoints watched from API Server. newEndpoints := sets.NewString() curDests, err := proxier.ipvs.GetRealServers(appliedVirtualServer) if err != nil { klog.Errorf("Failed to list IPVS destinations, error: %v", err) return err } for _, des := range curDests { curEndpoints.Insert(des.String()) } for _, epInfo := range proxier.endpointsMap[svcPortName] { if onlyNodeLocalEndpoints && !epInfo.GetIsLocal() { continue } newEndpoints.Insert(epInfo.String()) } // Create new endpoints for _, ep := range newEndpoints.List() { ip, port, err := net.SplitHostPort(ep) if err != nil { klog.Errorf("Failed to parse endpoint: %v, error: %v", ep, err) continue } portNum, err := strconv.Atoi(port) if err != nil { klog.Errorf("Failed to parse endpoint port %s, error: %v", port, err) continue } newDest := &utilipvs.RealServer{ Address: net.ParseIP(ip), Port: uint16(portNum), Weight: 1, } if curEndpoints.Has(ep) { // check if newEndpoint is in gracefulDelete list, if true, delete this ep immediately uniqueRS := GetUniqueRSName(vs, newDest) if !proxier.gracefuldeleteManager.InTerminationList(uniqueRS) { continue } klog.V(5).Infof("new ep %q is in graceful delete list", uniqueRS) err := proxier.gracefuldeleteManager.MoveRSOutofGracefulDeleteList(uniqueRS) if err != nil { klog.Errorf("Failed to delete endpoint: %v in gracefulDeleteQueue, error: %v", ep, err) continue } } err = proxier.ipvs.AddRealServer(appliedVirtualServer, newDest) if err != nil { klog.Errorf("Failed to add destination: %v, error: %v", newDest, err) continue } } // Delete old endpoints for _, ep := range curEndpoints.Difference(newEndpoints).UnsortedList() { // if curEndpoint is in gracefulDelete, skip uniqueRS := vs.String() + "/" + ep if proxier.gracefuldeleteManager.InTerminationList(uniqueRS) { continue } ip, port, err := net.SplitHostPort(ep) if err != nil { klog.Errorf("Failed to parse endpoint: %v, error: %v", ep, err) continue } portNum, err := strconv.Atoi(port) if err != nil { klog.Errorf("Failed to parse endpoint port %s, error: %v", port, err) continue } delDest := &utilipvs.RealServer{ Address: net.ParseIP(ip), Port: uint16(portNum), } klog.V(5).Infof("Using graceful delete to delete: %v", uniqueRS) err = proxier.gracefuldeleteManager.GracefulDeleteRS(appliedVirtualServer, delDest) if err != nil { klog.Errorf("Failed to delete destination: %v, error: %v", uniqueRS, err) continue } } return nil } func (proxier *Proxier) cleanLegacyService(activeServices map[string]bool, currentServices map[string]*utilipvs.VirtualServer, legacyBindAddrs map[string]bool) { for cs := range currentServices { svc := currentServices[cs] if proxier.isIPInExcludeCIDRs(svc.Address) { continue } if _, ok := activeServices[cs]; !ok { rsList, _ := proxier.ipvs.GetRealServers(svc) // If we still have real servers graceful termination is not done if len(rsList) > 0 { continue } // Applying graceful termination to all real servers for _, rs := range rsList { uniqueRS := GetUniqueRSName(svc, rs) // If RS is already in the graceful termination list, no need to add it again if proxier.gracefuldeleteManager.InTerminationList(uniqueRS) { continue } klog.V(5).Infof("Using graceful delete to delete: %v", uniqueRS) if err := proxier.gracefuldeleteManager.GracefulDeleteRS(svc, rs); err != nil { klog.Errorf("Failed to delete destination: %v, error: %v", uniqueRS, err) } } klog.V(4).Infof("Delete service %s", svc.String()) if err := proxier.ipvs.DeleteVirtualServer(svc); err != nil { klog.Errorf("Failed to delete service %s, error: %v", svc.String(), err) } addr := svc.Address.String() if _, ok := legacyBindAddrs[addr]; ok { klog.V(4).Infof("Unbinding address %s", addr) if err := proxier.netlinkHandle.UnbindAddress(addr, DefaultDummyDevice); err != nil { klog.Errorf("Failed to unbind service addr %s from dummy interface %s: %v", addr, DefaultDummyDevice, err) } else { // In case we delete a multi-port service, avoid trying to unbind multiple times delete(legacyBindAddrs, addr) } } } } } func (proxier *Proxier) isIPInExcludeCIDRs(ip net.IP) bool { // make sure it does not fall within an excluded CIDR range. for _, excludedCIDR := range proxier.excludeCIDRs { // Any validation of this CIDR already should have occurred. _, n, _ := net.ParseCIDR(excludedCIDR) if n.Contains(ip) { return true } } return false } func (proxier *Proxier) getLegacyBindAddr(activeBindAddrs map[string]bool, currentBindAddrs []string) map[string]bool { legacyAddrs := make(map[string]bool) isIpv6 := utilnet.IsIPv6(proxier.nodeIP) for _, addr := range currentBindAddrs { addrIsIpv6 := utilnet.IsIPv6(net.ParseIP(addr)) if addrIsIpv6 && !isIpv6 || !addrIsIpv6 && isIpv6 { continue } if _, ok := activeBindAddrs[addr]; !ok { legacyAddrs[addr] = true } } return legacyAddrs } // Join all words with spaces, terminate with newline and write to buff. func writeLine(buf *bytes.Buffer, words ...string) { // We avoid strings.Join for performance reasons. for i := range words { buf.WriteString(words[i]) if i < len(words)-1 { buf.WriteByte(' ') } else { buf.WriteByte('\n') } } } func writeBytesLine(buf *bytes.Buffer, bytes []byte) { buf.Write(bytes) buf.WriteByte('\n') } // listenPortOpener opens ports by calling bind() and listen(). type listenPortOpener struct{} // OpenLocalPort holds the given local port open. func (l *listenPortOpener) OpenLocalPort(lp *utilproxy.LocalPort) (utilproxy.Closeable, error) { return openLocalPort(lp) } func openLocalPort(lp *utilproxy.LocalPort) (utilproxy.Closeable, error) { // For ports on node IPs, open the actual port and hold it, even though we // use iptables to redirect traffic. // This ensures a) that it's safe to use that port and b) that (a) stays // true. The risk is that some process on the node (e.g. sshd or kubelet) // is using a port and we give that same port out to a Service. That would // be bad because iptables would silently claim the traffic but the process // would never know. // NOTE: We should not need to have a real listen()ing socket - bind() // should be enough, but I can't figure out a way to e2e test without // it. Tools like 'ss' and 'netstat' do not show sockets that are // bind()ed but not listen()ed, and at least the default debian netcat // has no way to avoid about 10 seconds of retries. var socket utilproxy.Closeable switch lp.Protocol { case "tcp": listener, err := net.Listen("tcp", net.JoinHostPort(lp.IP, strconv.Itoa(lp.Port))) if err != nil { return nil, err } socket = listener case "udp": addr, err := net.ResolveUDPAddr("udp", net.JoinHostPort(lp.IP, strconv.Itoa(lp.Port))) if err != nil { return nil, err } conn, err := net.ListenUDP("udp", addr) if err != nil { return nil, err } socket = conn default: return nil, fmt.Errorf("unknown protocol %q", lp.Protocol) } klog.V(2).Infof("Opened local port %s", lp.String()) return socket, nil } // ipvs Proxier fall back on iptables when it needs to do SNAT for engress packets // It will only operate iptables *nat table. // Create and link the kube postrouting chain for SNAT packets. // Chain POSTROUTING (policy ACCEPT) // target prot opt source destination // KUBE-POSTROUTING all -- 0.0.0.0/0 0.0.0.0/0 /* kubernetes postrouting rules * // Maintain by kubelet network sync loop // *nat // :KUBE-POSTROUTING - [0:0] // Chain KUBE-POSTROUTING (1 references) // target prot opt source destination // MASQUERADE all -- 0.0.0.0/0 0.0.0.0/0 /* kubernetes service traffic requiring SNAT */ mark match 0x4000/0x4000 // :KUBE-MARK-MASQ - [0:0] // Chain KUBE-MARK-MASQ (0 references) // target prot opt source destination // MARK all -- 0.0.0.0/0 0.0.0.0/0 MARK or 0x4000