// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Copyright ©2015 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package math32 import ( "math" ) const ( unan = 0x7fc00000 uinf = 0x7f800000 uneginf = 0xff800000 mask = 0x7f8 >> 3 shift = 32 - 8 - 1 bias = 127 ) // Abs returns the absolute value of x. // // Special cases are: // Abs(±Inf) = +Inf // Abs(NaN) = NaN func Abs(x float32) float32 { switch { case x < 0: return -x case x == 0: return 0 // return correctly abs(-0) } return x } // Copysign returns a value with the magnitude // of x and the sign of y. func Copysign(x, y float32) float32 { const sign = 1 << 31 return math.Float32frombits(math.Float32bits(x)&^sign | math.Float32bits(y)&sign) } // Hypot returns Sqrt(p*p + q*q), taking care to avoid // unnecessary overflow and underflow. // // Special cases are: // Hypot(±Inf, q) = +Inf // Hypot(p, ±Inf) = +Inf // Hypot(NaN, q) = NaN // Hypot(p, NaN) = NaN func Hypot(p, q float32) float32 { // special cases switch { case IsInf(p, 0) || IsInf(q, 0): return Inf(1) case IsNaN(p) || IsNaN(q): return NaN() } if p < 0 { p = -p } if q < 0 { q = -q } if p < q { p, q = q, p } if p == 0 { return 0 } q = q / p return p * Sqrt(1+q*q) } // Inf returns positive infinity if sign >= 0, negative infinity if sign < 0. func Inf(sign int) float32 { var v uint32 if sign >= 0 { v = uinf } else { v = uneginf } return math.Float32frombits(v) } // IsInf reports whether f is an infinity, according to sign. // If sign > 0, IsInf reports whether f is positive infinity. // If sign < 0, IsInf reports whether f is negative infinity. // If sign == 0, IsInf reports whether f is either infinity. func IsInf(f float32, sign int) bool { // Test for infinity by comparing against maximum float. // To avoid the floating-point hardware, could use: // x := math.Float32bits(f); // return sign >= 0 && x == uinf || sign <= 0 && x == uneginf; return sign >= 0 && f > math.MaxFloat32 || sign <= 0 && f < -math.MaxFloat32 } // IsNaN reports whether f is an IEEE 754 ``not-a-number'' value. func IsNaN(f float32) (is bool) { // IEEE 754 says that only NaNs satisfy f != f. // To avoid the floating-point hardware, could use: // x := math.Float32bits(f); // return uint32(x>>shift)&mask == mask && x != uinf && x != uneginf return f != f } // NaN returns an IEEE 754 ``not-a-number'' value. func NaN() float32 { return math.Float32frombits(unan) }