// Copyright ©2014 The gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package simple import ( "fmt" "golang.org/x/tools/container/intsets" "k8s.io/kubernetes/third_party/forked/gonum/graph" ) // UndirectedGraph implements a generalized undirected graph. type UndirectedGraph struct { nodes map[int]graph.Node edges map[int]edgeHolder self, absent float64 freeIDs intsets.Sparse usedIDs intsets.Sparse } // NewUndirectedGraph returns an UndirectedGraph with the specified self and absent // edge weight values. func NewUndirectedGraph(self, absent float64) *UndirectedGraph { return &UndirectedGraph{ nodes: make(map[int]graph.Node), edges: make(map[int]edgeHolder), self: self, absent: absent, } } // NewNodeID returns a new unique ID for a node to be added to g. The returned ID does // not become a valid ID in g until it is added to g. func (g *UndirectedGraph) NewNodeID() int { if len(g.nodes) == 0 { return 0 } if len(g.nodes) == maxInt { panic(fmt.Sprintf("simple: cannot allocate node: no slot")) } var id int if g.freeIDs.Len() != 0 && g.freeIDs.TakeMin(&id) { return id } if id = g.usedIDs.Max(); id < maxInt { return id + 1 } for id = 0; id < maxInt; id++ { if !g.usedIDs.Has(id) { return id } } panic("unreachable") } // AddNode adds n to the graph. It panics if the added node ID matches an existing node ID. func (g *UndirectedGraph) AddNode(n graph.Node) { if _, exists := g.nodes[n.ID()]; exists { panic(fmt.Sprintf("simple: node ID collision: %d", n.ID())) } g.nodes[n.ID()] = n g.edges[n.ID()] = &sliceEdgeHolder{self: n.ID()} g.freeIDs.Remove(n.ID()) g.usedIDs.Insert(n.ID()) } // RemoveNode removes n from the graph, as well as any edges attached to it. If the node // is not in the graph it is a no-op. func (g *UndirectedGraph) RemoveNode(n graph.Node) { if _, ok := g.nodes[n.ID()]; !ok { return } delete(g.nodes, n.ID()) g.edges[n.ID()].Visit(func(neighbor int, edge graph.Edge) { g.edges[neighbor] = g.edges[neighbor].Delete(n.ID()) }) delete(g.edges, n.ID()) g.freeIDs.Insert(n.ID()) g.usedIDs.Remove(n.ID()) } // SetEdge adds e, an edge from one node to another. If the nodes do not exist, they are added. // It will panic if the IDs of the e.From and e.To are equal. func (g *UndirectedGraph) SetEdge(e graph.Edge) { var ( from = e.From() fid = from.ID() to = e.To() tid = to.ID() ) if fid == tid { panic("simple: adding self edge") } if !g.Has(from) { g.AddNode(from) } if !g.Has(to) { g.AddNode(to) } g.edges[fid] = g.edges[fid].Set(tid, e) g.edges[tid] = g.edges[tid].Set(fid, e) } // RemoveEdge removes e from the graph, leaving the terminal nodes. If the edge does not exist // it is a no-op. func (g *UndirectedGraph) RemoveEdge(e graph.Edge) { from, to := e.From(), e.To() if _, ok := g.nodes[from.ID()]; !ok { return } if _, ok := g.nodes[to.ID()]; !ok { return } g.edges[from.ID()] = g.edges[from.ID()].Delete(to.ID()) g.edges[to.ID()] = g.edges[to.ID()].Delete(from.ID()) } // Node returns the node in the graph with the given ID. func (g *UndirectedGraph) Node(id int) graph.Node { return g.nodes[id] } // Has returns whether the node exists within the graph. func (g *UndirectedGraph) Has(n graph.Node) bool { _, ok := g.nodes[n.ID()] return ok } // Nodes returns all the nodes in the graph. func (g *UndirectedGraph) Nodes() []graph.Node { nodes := make([]graph.Node, len(g.nodes)) i := 0 for _, n := range g.nodes { nodes[i] = n i++ } return nodes } // Edges returns all the edges in the graph. func (g *UndirectedGraph) Edges() []graph.Edge { var edges []graph.Edge seen := make(map[[2]int]struct{}) for _, u := range g.edges { u.Visit(func(neighbor int, e graph.Edge) { uid := e.From().ID() vid := e.To().ID() if _, ok := seen[[2]int{uid, vid}]; ok { return } seen[[2]int{uid, vid}] = struct{}{} seen[[2]int{vid, uid}] = struct{}{} edges = append(edges, e) }) } return edges } // From returns all nodes in g that can be reached directly from n. func (g *UndirectedGraph) From(n graph.Node) []graph.Node { if !g.Has(n) { return nil } nodes := make([]graph.Node, g.edges[n.ID()].Len()) i := 0 g.edges[n.ID()].Visit(func(neighbor int, edge graph.Edge) { nodes[i] = g.nodes[neighbor] i++ }) return nodes } // HasEdgeBetween returns whether an edge exists between nodes x and y. func (g *UndirectedGraph) HasEdgeBetween(x, y graph.Node) bool { _, ok := g.edges[x.ID()].Get(y.ID()) return ok } // Edge returns the edge from u to v if such an edge exists and nil otherwise. // The node v must be directly reachable from u as defined by the From method. func (g *UndirectedGraph) Edge(u, v graph.Node) graph.Edge { return g.EdgeBetween(u, v) } // EdgeBetween returns the edge between nodes x and y. func (g *UndirectedGraph) EdgeBetween(x, y graph.Node) graph.Edge { // We don't need to check if neigh exists because // it's implicit in the edges access. if !g.Has(x) { return nil } edge, _ := g.edges[x.ID()].Get(y.ID()) return edge } // Weight returns the weight for the edge between x and y if Edge(x, y) returns a non-nil Edge. // If x and y are the same node or there is no joining edge between the two nodes the weight // value returned is either the graph's absent or self value. Weight returns true if an edge // exists between x and y or if x and y have the same ID, false otherwise. func (g *UndirectedGraph) Weight(x, y graph.Node) (w float64, ok bool) { xid := x.ID() yid := y.ID() if xid == yid { return g.self, true } if n, ok := g.edges[xid]; ok { if e, ok := n.Get(yid); ok { return e.Weight(), true } } return g.absent, false } // Degree returns the degree of n in g. func (g *UndirectedGraph) Degree(n graph.Node) int { if _, ok := g.nodes[n.ID()]; !ok { return 0 } return g.edges[n.ID()].Len() }