// Copyright ©2015 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package lapack64 import ( "gonum.org/v1/gonum/blas" "gonum.org/v1/gonum/blas/blas64" "gonum.org/v1/gonum/lapack" "gonum.org/v1/gonum/lapack/gonum" ) var lapack64 lapack.Float64 = gonum.Implementation{} // Use sets the LAPACK float64 implementation to be used by subsequent BLAS calls. // The default implementation is native.Implementation. func Use(l lapack.Float64) { lapack64 = l } func max(a, b int) int { if a > b { return a } return b } // Potrf computes the Cholesky factorization of a. // The factorization has the form // A = Uᵀ * U if a.Uplo == blas.Upper, or // A = L * Lᵀ if a.Uplo == blas.Lower, // where U is an upper triangular matrix and L is lower triangular. // The triangular matrix is returned in t, and the underlying data between // a and t is shared. The returned bool indicates whether a is positive // definite and the factorization could be finished. func Potrf(a blas64.Symmetric) (t blas64.Triangular, ok bool) { ok = lapack64.Dpotrf(a.Uplo, a.N, a.Data, max(1, a.Stride)) t.Uplo = a.Uplo t.N = a.N t.Data = a.Data t.Stride = a.Stride t.Diag = blas.NonUnit return } // Potri computes the inverse of a real symmetric positive definite matrix A // using its Cholesky factorization. // // On entry, t contains the triangular factor U or L from the Cholesky // factorization A = Uᵀ*U or A = L*Lᵀ, as computed by Potrf. // // On return, the upper or lower triangle of the (symmetric) inverse of A is // stored in t, overwriting the input factor U or L, and also returned in a. The // underlying data between a and t is shared. // // The returned bool indicates whether the inverse was computed successfully. func Potri(t blas64.Triangular) (a blas64.Symmetric, ok bool) { ok = lapack64.Dpotri(t.Uplo, t.N, t.Data, max(1, t.Stride)) a.Uplo = t.Uplo a.N = t.N a.Data = t.Data a.Stride = t.Stride return } // Potrs solves a system of n linear equations A*X = B where A is an n×n // symmetric positive definite matrix and B is an n×nrhs matrix, using the // Cholesky factorization A = Uᵀ*U or A = L*Lᵀ. t contains the corresponding // triangular factor as returned by Potrf. On entry, B contains the right-hand // side matrix B, on return it contains the solution matrix X. func Potrs(t blas64.Triangular, b blas64.General) { lapack64.Dpotrs(t.Uplo, t.N, b.Cols, t.Data, max(1, t.Stride), b.Data, max(1, b.Stride)) } // Gecon estimates the reciprocal of the condition number of the n×n matrix A // given the LU decomposition of the matrix. The condition number computed may // be based on the 1-norm or the ∞-norm. // // a contains the result of the LU decomposition of A as computed by Getrf. // // anorm is the corresponding 1-norm or ∞-norm of the original matrix A. // // work is a temporary data slice of length at least 4*n and Gecon will panic otherwise. // // iwork is a temporary data slice of length at least n and Gecon will panic otherwise. func Gecon(norm lapack.MatrixNorm, a blas64.General, anorm float64, work []float64, iwork []int) float64 { return lapack64.Dgecon(norm, a.Cols, a.Data, max(1, a.Stride), anorm, work, iwork) } // Gels finds a minimum-norm solution based on the matrices A and B using the // QR or LQ factorization. Gels returns false if the matrix // A is singular, and true if this solution was successfully found. // // The minimization problem solved depends on the input parameters. // // 1. If m >= n and trans == blas.NoTrans, Gels finds X such that || A*X - B||_2 // is minimized. // 2. If m < n and trans == blas.NoTrans, Gels finds the minimum norm solution of // A * X = B. // 3. If m >= n and trans == blas.Trans, Gels finds the minimum norm solution of // Aᵀ * X = B. // 4. If m < n and trans == blas.Trans, Gels finds X such that || A*X - B||_2 // is minimized. // Note that the least-squares solutions (cases 1 and 3) perform the minimization // per column of B. This is not the same as finding the minimum-norm matrix. // // The matrix A is a general matrix of size m×n and is modified during this call. // The input matrix B is of size max(m,n)×nrhs, and serves two purposes. On entry, // the elements of b specify the input matrix B. B has size m×nrhs if // trans == blas.NoTrans, and n×nrhs if trans == blas.Trans. On exit, the // leading submatrix of b contains the solution vectors X. If trans == blas.NoTrans, // this submatrix is of size n×nrhs, and of size m×nrhs otherwise. // // Work is temporary storage, and lwork specifies the usable memory length. // At minimum, lwork >= max(m,n) + max(m,n,nrhs), and this function will panic // otherwise. A longer work will enable blocked algorithms to be called. // In the special case that lwork == -1, work[0] will be set to the optimal working // length. func Gels(trans blas.Transpose, a blas64.General, b blas64.General, work []float64, lwork int) bool { return lapack64.Dgels(trans, a.Rows, a.Cols, b.Cols, a.Data, max(1, a.Stride), b.Data, max(1, b.Stride), work, lwork) } // Geqrf computes the QR factorization of the m×n matrix A using a blocked // algorithm. A is modified to contain the information to construct Q and R. // The upper triangle of a contains the matrix R. The lower triangular elements // (not including the diagonal) contain the elementary reflectors. tau is modified // to contain the reflector scales. tau must have length at least min(m,n), and // this function will panic otherwise. // // The ith elementary reflector can be explicitly constructed by first extracting // the // v[j] = 0 j < i // v[j] = 1 j == i // v[j] = a[j*lda+i] j > i // and computing H_i = I - tau[i] * v * vᵀ. // // The orthonormal matrix Q can be constucted from a product of these elementary // reflectors, Q = H_0 * H_1 * ... * H_{k-1}, where k = min(m,n). // // Work is temporary storage, and lwork specifies the usable memory length. // At minimum, lwork >= m and this function will panic otherwise. // Geqrf is a blocked QR factorization, but the block size is limited // by the temporary space available. If lwork == -1, instead of performing Geqrf, // the optimal work length will be stored into work[0]. func Geqrf(a blas64.General, tau, work []float64, lwork int) { lapack64.Dgeqrf(a.Rows, a.Cols, a.Data, max(1, a.Stride), tau, work, lwork) } // Gelqf computes the LQ factorization of the m×n matrix A using a blocked // algorithm. A is modified to contain the information to construct L and Q. The // lower triangle of a contains the matrix L. The elements above the diagonal // and the slice tau represent the matrix Q. tau is modified to contain the // reflector scales. tau must have length at least min(m,n), and this function // will panic otherwise. // // See Geqrf for a description of the elementary reflectors and orthonormal // matrix Q. Q is constructed as a product of these elementary reflectors, // Q = H_{k-1} * ... * H_1 * H_0. // // Work is temporary storage, and lwork specifies the usable memory length. // At minimum, lwork >= m and this function will panic otherwise. // Gelqf is a blocked LQ factorization, but the block size is limited // by the temporary space available. If lwork == -1, instead of performing Gelqf, // the optimal work length will be stored into work[0]. func Gelqf(a blas64.General, tau, work []float64, lwork int) { lapack64.Dgelqf(a.Rows, a.Cols, a.Data, max(1, a.Stride), tau, work, lwork) } // Gesvd computes the singular value decomposition of the input matrix A. // // The singular value decomposition is // A = U * Sigma * Vᵀ // where Sigma is an m×n diagonal matrix containing the singular values of A, // U is an m×m orthogonal matrix and V is an n×n orthogonal matrix. The first // min(m,n) columns of U and V are the left and right singular vectors of A // respectively. // // jobU and jobVT are options for computing the singular vectors. The behavior // is as follows // jobU == lapack.SVDAll All m columns of U are returned in u // jobU == lapack.SVDStore The first min(m,n) columns are returned in u // jobU == lapack.SVDOverwrite The first min(m,n) columns of U are written into a // jobU == lapack.SVDNone The columns of U are not computed. // The behavior is the same for jobVT and the rows of Vᵀ. At most one of jobU // and jobVT can equal lapack.SVDOverwrite, and Gesvd will panic otherwise. // // On entry, a contains the data for the m×n matrix A. During the call to Gesvd // the data is overwritten. On exit, A contains the appropriate singular vectors // if either job is lapack.SVDOverwrite. // // s is a slice of length at least min(m,n) and on exit contains the singular // values in decreasing order. // // u contains the left singular vectors on exit, stored columnwise. If // jobU == lapack.SVDAll, u is of size m×m. If jobU == lapack.SVDStore u is // of size m×min(m,n). If jobU == lapack.SVDOverwrite or lapack.SVDNone, u is // not used. // // vt contains the left singular vectors on exit, stored rowwise. If // jobV == lapack.SVDAll, vt is of size n×m. If jobVT == lapack.SVDStore vt is // of size min(m,n)×n. If jobVT == lapack.SVDOverwrite or lapack.SVDNone, vt is // not used. // // work is a slice for storing temporary memory, and lwork is the usable size of // the slice. lwork must be at least max(5*min(m,n), 3*min(m,n)+max(m,n)). // If lwork == -1, instead of performing Gesvd, the optimal work length will be // stored into work[0]. Gesvd will panic if the working memory has insufficient // storage. // // Gesvd returns whether the decomposition successfully completed. func Gesvd(jobU, jobVT lapack.SVDJob, a, u, vt blas64.General, s, work []float64, lwork int) (ok bool) { return lapack64.Dgesvd(jobU, jobVT, a.Rows, a.Cols, a.Data, max(1, a.Stride), s, u.Data, max(1, u.Stride), vt.Data, max(1, vt.Stride), work, lwork) } // Getrf computes the LU decomposition of the m×n matrix A. // The LU decomposition is a factorization of A into // A = P * L * U // where P is a permutation matrix, L is a unit lower triangular matrix, and // U is a (usually) non-unit upper triangular matrix. On exit, L and U are stored // in place into a. // // ipiv is a permutation vector. It indicates that row i of the matrix was // changed with ipiv[i]. ipiv must have length at least min(m,n), and will panic // otherwise. ipiv is zero-indexed. // // Getrf is the blocked version of the algorithm. // // Getrf returns whether the matrix A is singular. The LU decomposition will // be computed regardless of the singularity of A, but division by zero // will occur if the false is returned and the result is used to solve a // system of equations. func Getrf(a blas64.General, ipiv []int) bool { return lapack64.Dgetrf(a.Rows, a.Cols, a.Data, max(1, a.Stride), ipiv) } // Getri computes the inverse of the matrix A using the LU factorization computed // by Getrf. On entry, a contains the PLU decomposition of A as computed by // Getrf and on exit contains the reciprocal of the original matrix. // // Getri will not perform the inversion if the matrix is singular, and returns // a boolean indicating whether the inversion was successful. // // Work is temporary storage, and lwork specifies the usable memory length. // At minimum, lwork >= n and this function will panic otherwise. // Getri is a blocked inversion, but the block size is limited // by the temporary space available. If lwork == -1, instead of performing Getri, // the optimal work length will be stored into work[0]. func Getri(a blas64.General, ipiv []int, work []float64, lwork int) (ok bool) { return lapack64.Dgetri(a.Cols, a.Data, max(1, a.Stride), ipiv, work, lwork) } // Getrs solves a system of equations using an LU factorization. // The system of equations solved is // A * X = B if trans == blas.Trans // Aᵀ * X = B if trans == blas.NoTrans // A is a general n×n matrix with stride lda. B is a general matrix of size n×nrhs. // // On entry b contains the elements of the matrix B. On exit, b contains the // elements of X, the solution to the system of equations. // // a and ipiv contain the LU factorization of A and the permutation indices as // computed by Getrf. ipiv is zero-indexed. func Getrs(trans blas.Transpose, a blas64.General, b blas64.General, ipiv []int) { lapack64.Dgetrs(trans, a.Cols, b.Cols, a.Data, max(1, a.Stride), ipiv, b.Data, max(1, b.Stride)) } // Ggsvd3 computes the generalized singular value decomposition (GSVD) // of an m×n matrix A and p×n matrix B: // Uᵀ*A*Q = D1*[ 0 R ] // // Vᵀ*B*Q = D2*[ 0 R ] // where U, V and Q are orthogonal matrices. // // Ggsvd3 returns k and l, the dimensions of the sub-blocks. k+l // is the effective numerical rank of the (m+p)×n matrix [ Aᵀ Bᵀ ]ᵀ. // R is a (k+l)×(k+l) nonsingular upper triangular matrix, D1 and // D2 are m×(k+l) and p×(k+l) diagonal matrices and of the following // structures, respectively: // // If m-k-l >= 0, // // k l // D1 = k [ I 0 ] // l [ 0 C ] // m-k-l [ 0 0 ] // // k l // D2 = l [ 0 S ] // p-l [ 0 0 ] // // n-k-l k l // [ 0 R ] = k [ 0 R11 R12 ] k // l [ 0 0 R22 ] l // // where // // C = diag( alpha_k, ... , alpha_{k+l} ), // S = diag( beta_k, ... , beta_{k+l} ), // C^2 + S^2 = I. // // R is stored in // A[0:k+l, n-k-l:n] // on exit. // // If m-k-l < 0, // // k m-k k+l-m // D1 = k [ I 0 0 ] // m-k [ 0 C 0 ] // // k m-k k+l-m // D2 = m-k [ 0 S 0 ] // k+l-m [ 0 0 I ] // p-l [ 0 0 0 ] // // n-k-l k m-k k+l-m // [ 0 R ] = k [ 0 R11 R12 R13 ] // m-k [ 0 0 R22 R23 ] // k+l-m [ 0 0 0 R33 ] // // where // C = diag( alpha_k, ... , alpha_m ), // S = diag( beta_k, ... , beta_m ), // C^2 + S^2 = I. // // R = [ R11 R12 R13 ] is stored in A[1:m, n-k-l+1:n] // [ 0 R22 R23 ] // and R33 is stored in // B[m-k:l, n+m-k-l:n] on exit. // // Ggsvd3 computes C, S, R, and optionally the orthogonal transformation // matrices U, V and Q. // // jobU, jobV and jobQ are options for computing the orthogonal matrices. The behavior // is as follows // jobU == lapack.GSVDU Compute orthogonal matrix U // jobU == lapack.GSVDNone Do not compute orthogonal matrix. // The behavior is the same for jobV and jobQ with the exception that instead of // lapack.GSVDU these accept lapack.GSVDV and lapack.GSVDQ respectively. // The matrices U, V and Q must be m×m, p×p and n×n respectively unless the // relevant job parameter is lapack.GSVDNone. // // alpha and beta must have length n or Ggsvd3 will panic. On exit, alpha and // beta contain the generalized singular value pairs of A and B // alpha[0:k] = 1, // beta[0:k] = 0, // if m-k-l >= 0, // alpha[k:k+l] = diag(C), // beta[k:k+l] = diag(S), // if m-k-l < 0, // alpha[k:m]= C, alpha[m:k+l]= 0 // beta[k:m] = S, beta[m:k+l] = 1. // if k+l < n, // alpha[k+l:n] = 0 and // beta[k+l:n] = 0. // // On exit, iwork contains the permutation required to sort alpha descending. // // iwork must have length n, work must have length at least max(1, lwork), and // lwork must be -1 or greater than n, otherwise Ggsvd3 will panic. If // lwork is -1, work[0] holds the optimal lwork on return, but Ggsvd3 does // not perform the GSVD. func Ggsvd3(jobU, jobV, jobQ lapack.GSVDJob, a, b blas64.General, alpha, beta []float64, u, v, q blas64.General, work []float64, lwork int, iwork []int) (k, l int, ok bool) { return lapack64.Dggsvd3(jobU, jobV, jobQ, a.Rows, a.Cols, b.Rows, a.Data, max(1, a.Stride), b.Data, max(1, b.Stride), alpha, beta, u.Data, max(1, u.Stride), v.Data, max(1, v.Stride), q.Data, max(1, q.Stride), work, lwork, iwork) } // Lange computes the matrix norm of the general m×n matrix A. The input norm // specifies the norm computed. // lapack.MaxAbs: the maximum absolute value of an element. // lapack.MaxColumnSum: the maximum column sum of the absolute values of the entries. // lapack.MaxRowSum: the maximum row sum of the absolute values of the entries. // lapack.Frobenius: the square root of the sum of the squares of the entries. // If norm == lapack.MaxColumnSum, work must be of length n, and this function will panic otherwise. // There are no restrictions on work for the other matrix norms. func Lange(norm lapack.MatrixNorm, a blas64.General, work []float64) float64 { return lapack64.Dlange(norm, a.Rows, a.Cols, a.Data, max(1, a.Stride), work) } // Lansy computes the specified norm of an n×n symmetric matrix. If // norm == lapack.MaxColumnSum or norm == lapackMaxRowSum work must have length // at least n and this function will panic otherwise. // There are no restrictions on work for the other matrix norms. func Lansy(norm lapack.MatrixNorm, a blas64.Symmetric, work []float64) float64 { return lapack64.Dlansy(norm, a.Uplo, a.N, a.Data, max(1, a.Stride), work) } // Lantr computes the specified norm of an m×n trapezoidal matrix A. If // norm == lapack.MaxColumnSum work must have length at least n and this function // will panic otherwise. There are no restrictions on work for the other matrix norms. func Lantr(norm lapack.MatrixNorm, a blas64.Triangular, work []float64) float64 { return lapack64.Dlantr(norm, a.Uplo, a.Diag, a.N, a.N, a.Data, max(1, a.Stride), work) } // Lapmt rearranges the columns of the m×n matrix X as specified by the // permutation k_0, k_1, ..., k_{n-1} of the integers 0, ..., n-1. // // If forward is true a forward permutation is performed: // // X[0:m, k[j]] is moved to X[0:m, j] for j = 0, 1, ..., n-1. // // otherwise a backward permutation is performed: // // X[0:m, j] is moved to X[0:m, k[j]] for j = 0, 1, ..., n-1. // // k must have length n, otherwise Lapmt will panic. k is zero-indexed. func Lapmt(forward bool, x blas64.General, k []int) { lapack64.Dlapmt(forward, x.Rows, x.Cols, x.Data, max(1, x.Stride), k) } // Ormlq multiplies the matrix C by the othogonal matrix Q defined by // A and tau. A and tau are as returned from Gelqf. // C = Q * C if side == blas.Left and trans == blas.NoTrans // C = Qᵀ * C if side == blas.Left and trans == blas.Trans // C = C * Q if side == blas.Right and trans == blas.NoTrans // C = C * Qᵀ if side == blas.Right and trans == blas.Trans // If side == blas.Left, A is a matrix of side k×m, and if side == blas.Right // A is of size k×n. This uses a blocked algorithm. // // Work is temporary storage, and lwork specifies the usable memory length. // At minimum, lwork >= m if side == blas.Left and lwork >= n if side == blas.Right, // and this function will panic otherwise. // Ormlq uses a block algorithm, but the block size is limited // by the temporary space available. If lwork == -1, instead of performing Ormlq, // the optimal work length will be stored into work[0]. // // Tau contains the Householder scales and must have length at least k, and // this function will panic otherwise. func Ormlq(side blas.Side, trans blas.Transpose, a blas64.General, tau []float64, c blas64.General, work []float64, lwork int) { lapack64.Dormlq(side, trans, c.Rows, c.Cols, a.Rows, a.Data, max(1, a.Stride), tau, c.Data, max(1, c.Stride), work, lwork) } // Ormqr multiplies an m×n matrix C by an orthogonal matrix Q as // C = Q * C if side == blas.Left and trans == blas.NoTrans, // C = Qᵀ * C if side == blas.Left and trans == blas.Trans, // C = C * Q if side == blas.Right and trans == blas.NoTrans, // C = C * Qᵀ if side == blas.Right and trans == blas.Trans, // where Q is defined as the product of k elementary reflectors // Q = H_0 * H_1 * ... * H_{k-1}. // // If side == blas.Left, A is an m×k matrix and 0 <= k <= m. // If side == blas.Right, A is an n×k matrix and 0 <= k <= n. // The ith column of A contains the vector which defines the elementary // reflector H_i and tau[i] contains its scalar factor. tau must have length k // and Ormqr will panic otherwise. Geqrf returns A and tau in the required // form. // // work must have length at least max(1,lwork), and lwork must be at least n if // side == blas.Left and at least m if side == blas.Right, otherwise Ormqr will // panic. // // work is temporary storage, and lwork specifies the usable memory length. At // minimum, lwork >= m if side == blas.Left and lwork >= n if side == // blas.Right, and this function will panic otherwise. Larger values of lwork // will generally give better performance. On return, work[0] will contain the // optimal value of lwork. // // If lwork is -1, instead of performing Ormqr, the optimal workspace size will // be stored into work[0]. func Ormqr(side blas.Side, trans blas.Transpose, a blas64.General, tau []float64, c blas64.General, work []float64, lwork int) { lapack64.Dormqr(side, trans, c.Rows, c.Cols, a.Cols, a.Data, max(1, a.Stride), tau, c.Data, max(1, c.Stride), work, lwork) } // Pocon estimates the reciprocal of the condition number of a positive-definite // matrix A given the Cholesky decmposition of A. The condition number computed // is based on the 1-norm and the ∞-norm. // // anorm is the 1-norm and the ∞-norm of the original matrix A. // // work is a temporary data slice of length at least 3*n and Pocon will panic otherwise. // // iwork is a temporary data slice of length at least n and Pocon will panic otherwise. func Pocon(a blas64.Symmetric, anorm float64, work []float64, iwork []int) float64 { return lapack64.Dpocon(a.Uplo, a.N, a.Data, max(1, a.Stride), anorm, work, iwork) } // Syev computes all eigenvalues and, optionally, the eigenvectors of a real // symmetric matrix A. // // w contains the eigenvalues in ascending order upon return. w must have length // at least n, and Syev will panic otherwise. // // On entry, a contains the elements of the symmetric matrix A in the triangular // portion specified by uplo. If jobz == lapack.EVCompute, a contains the // orthonormal eigenvectors of A on exit, otherwise jobz must be lapack.EVNone // and on exit the specified triangular region is overwritten. // // Work is temporary storage, and lwork specifies the usable memory length. At minimum, // lwork >= 3*n-1, and Syev will panic otherwise. The amount of blocking is // limited by the usable length. If lwork == -1, instead of computing Syev the // optimal work length is stored into work[0]. func Syev(jobz lapack.EVJob, a blas64.Symmetric, w, work []float64, lwork int) (ok bool) { return lapack64.Dsyev(jobz, a.Uplo, a.N, a.Data, max(1, a.Stride), w, work, lwork) } // Trcon estimates the reciprocal of the condition number of a triangular matrix A. // The condition number computed may be based on the 1-norm or the ∞-norm. // // work is a temporary data slice of length at least 3*n and Trcon will panic otherwise. // // iwork is a temporary data slice of length at least n and Trcon will panic otherwise. func Trcon(norm lapack.MatrixNorm, a blas64.Triangular, work []float64, iwork []int) float64 { return lapack64.Dtrcon(norm, a.Uplo, a.Diag, a.N, a.Data, max(1, a.Stride), work, iwork) } // Trtri computes the inverse of a triangular matrix, storing the result in place // into a. // // Trtri will not perform the inversion if the matrix is singular, and returns // a boolean indicating whether the inversion was successful. func Trtri(a blas64.Triangular) (ok bool) { return lapack64.Dtrtri(a.Uplo, a.Diag, a.N, a.Data, max(1, a.Stride)) } // Trtrs solves a triangular system of the form A * X = B or Aᵀ * X = B. Trtrs // returns whether the solve completed successfully. If A is singular, no solve is performed. func Trtrs(trans blas.Transpose, a blas64.Triangular, b blas64.General) (ok bool) { return lapack64.Dtrtrs(a.Uplo, trans, a.Diag, a.N, b.Cols, a.Data, max(1, a.Stride), b.Data, max(1, b.Stride)) } // Geev computes the eigenvalues and, optionally, the left and/or right // eigenvectors for an n×n real nonsymmetric matrix A. // // The right eigenvector v_j of A corresponding to an eigenvalue λ_j // is defined by // A v_j = λ_j v_j, // and the left eigenvector u_j corresponding to an eigenvalue λ_j is defined by // u_jᴴ A = λ_j u_jᴴ, // where u_jᴴ is the conjugate transpose of u_j. // // On return, A will be overwritten and the left and right eigenvectors will be // stored, respectively, in the columns of the n×n matrices VL and VR in the // same order as their eigenvalues. If the j-th eigenvalue is real, then // u_j = VL[:,j], // v_j = VR[:,j], // and if it is not real, then j and j+1 form a complex conjugate pair and the // eigenvectors can be recovered as // u_j = VL[:,j] + i*VL[:,j+1], // u_{j+1} = VL[:,j] - i*VL[:,j+1], // v_j = VR[:,j] + i*VR[:,j+1], // v_{j+1} = VR[:,j] - i*VR[:,j+1], // where i is the imaginary unit. The computed eigenvectors are normalized to // have Euclidean norm equal to 1 and largest component real. // // Left eigenvectors will be computed only if jobvl == lapack.LeftEVCompute, // otherwise jobvl must be lapack.LeftEVNone. // Right eigenvectors will be computed only if jobvr == lapack.RightEVCompute, // otherwise jobvr must be lapack.RightEVNone. // For other values of jobvl and jobvr Geev will panic. // // On return, wr and wi will contain the real and imaginary parts, respectively, // of the computed eigenvalues. Complex conjugate pairs of eigenvalues appear // consecutively with the eigenvalue having the positive imaginary part first. // wr and wi must have length n, and Geev will panic otherwise. // // work must have length at least lwork and lwork must be at least max(1,4*n) if // the left or right eigenvectors are computed, and at least max(1,3*n) if no // eigenvectors are computed. For good performance, lwork must generally be // larger. On return, optimal value of lwork will be stored in work[0]. // // If lwork == -1, instead of performing Geev, the function only calculates the // optimal vaule of lwork and stores it into work[0]. // // On return, first will be the index of the first valid eigenvalue. // If first == 0, all eigenvalues and eigenvectors have been computed. // If first is positive, Geev failed to compute all the eigenvalues, no // eigenvectors have been computed and wr[first:] and wi[first:] contain those // eigenvalues which have converged. func Geev(jobvl lapack.LeftEVJob, jobvr lapack.RightEVJob, a blas64.General, wr, wi []float64, vl, vr blas64.General, work []float64, lwork int) (first int) { n := a.Rows if a.Cols != n { panic("lapack64: matrix not square") } if jobvl == lapack.LeftEVCompute && (vl.Rows != n || vl.Cols != n) { panic("lapack64: bad size of VL") } if jobvr == lapack.RightEVCompute && (vr.Rows != n || vr.Cols != n) { panic("lapack64: bad size of VR") } return lapack64.Dgeev(jobvl, jobvr, n, a.Data, max(1, a.Stride), wr, wi, vl.Data, max(1, vl.Stride), vr.Data, max(1, vr.Stride), work, lwork) }