// Copyright ©2014 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package simple import ( "fmt" "gonum.org/v1/gonum/graph" "gonum.org/v1/gonum/graph/internal/uid" "gonum.org/v1/gonum/graph/iterator" ) var ( dg *DirectedGraph _ graph.Graph = dg _ graph.Directed = dg _ graph.NodeAdder = dg _ graph.NodeRemover = dg _ graph.EdgeAdder = dg _ graph.EdgeRemover = dg ) // DirectedGraph implements a generalized directed graph. type DirectedGraph struct { nodes map[int64]graph.Node from map[int64]map[int64]graph.Edge to map[int64]map[int64]graph.Edge nodeIDs uid.Set } // NewDirectedGraph returns a DirectedGraph. func NewDirectedGraph() *DirectedGraph { return &DirectedGraph{ nodes: make(map[int64]graph.Node), from: make(map[int64]map[int64]graph.Edge), to: make(map[int64]map[int64]graph.Edge), nodeIDs: uid.NewSet(), } } // AddNode adds n to the graph. It panics if the added node ID matches an existing node ID. func (g *DirectedGraph) AddNode(n graph.Node) { if _, exists := g.nodes[n.ID()]; exists { panic(fmt.Sprintf("simple: node ID collision: %d", n.ID())) } g.nodes[n.ID()] = n g.nodeIDs.Use(n.ID()) } // Edge returns the edge from u to v if such an edge exists and nil otherwise. // The node v must be directly reachable from u as defined by the From method. func (g *DirectedGraph) Edge(uid, vid int64) graph.Edge { edge, ok := g.from[uid][vid] if !ok { return nil } return edge } // Edges returns all the edges in the graph. func (g *DirectedGraph) Edges() graph.Edges { var edges []graph.Edge for _, u := range g.nodes { for _, e := range g.from[u.ID()] { edges = append(edges, e) } } if len(edges) == 0 { return graph.Empty } return iterator.NewOrderedEdges(edges) } // From returns all nodes in g that can be reached directly from n. func (g *DirectedGraph) From(id int64) graph.Nodes { if _, ok := g.from[id]; !ok { return graph.Empty } from := make([]graph.Node, len(g.from[id])) i := 0 for vid := range g.from[id] { from[i] = g.nodes[vid] i++ } if len(from) == 0 { return graph.Empty } return iterator.NewOrderedNodes(from) } // HasEdgeBetween returns whether an edge exists between nodes x and y without // considering direction. func (g *DirectedGraph) HasEdgeBetween(xid, yid int64) bool { if _, ok := g.from[xid][yid]; ok { return true } _, ok := g.from[yid][xid] return ok } // HasEdgeFromTo returns whether an edge exists in the graph from u to v. func (g *DirectedGraph) HasEdgeFromTo(uid, vid int64) bool { if _, ok := g.from[uid][vid]; !ok { return false } return true } // NewEdge returns a new Edge from the source to the destination node. func (g *DirectedGraph) NewEdge(from, to graph.Node) graph.Edge { return &Edge{F: from, T: to} } // NewNode returns a new unique Node to be added to g. The Node's ID does // not become valid in g until the Node is added to g. func (g *DirectedGraph) NewNode() graph.Node { if len(g.nodes) == 0 { return Node(0) } if int64(len(g.nodes)) == uid.Max { panic("simple: cannot allocate node: no slot") } return Node(g.nodeIDs.NewID()) } // Node returns the node with the given ID if it exists in the graph, // and nil otherwise. func (g *DirectedGraph) Node(id int64) graph.Node { return g.nodes[id] } // Nodes returns all the nodes in the graph. func (g *DirectedGraph) Nodes() graph.Nodes { if len(g.nodes) == 0 { return graph.Empty } nodes := make([]graph.Node, len(g.nodes)) i := 0 for _, n := range g.nodes { nodes[i] = n i++ } return iterator.NewOrderedNodes(nodes) } // RemoveEdge removes the edge with the given end point IDs from the graph, leaving the terminal // nodes. If the edge does not exist it is a no-op. func (g *DirectedGraph) RemoveEdge(fid, tid int64) { if _, ok := g.nodes[fid]; !ok { return } if _, ok := g.nodes[tid]; !ok { return } delete(g.from[fid], tid) delete(g.to[tid], fid) } // RemoveNode removes the node with the given ID from the graph, as well as any edges attached // to it. If the node is not in the graph it is a no-op. func (g *DirectedGraph) RemoveNode(id int64) { if _, ok := g.nodes[id]; !ok { return } delete(g.nodes, id) for from := range g.from[id] { delete(g.to[from], id) } delete(g.from, id) for to := range g.to[id] { delete(g.from[to], id) } delete(g.to, id) g.nodeIDs.Release(id) } // SetEdge adds e, an edge from one node to another. If the nodes do not exist, they are added // and are set to the nodes of the edge otherwise. // It will panic if the IDs of the e.From and e.To are equal. func (g *DirectedGraph) SetEdge(e graph.Edge) { var ( from = e.From() fid = from.ID() to = e.To() tid = to.ID() ) if fid == tid { panic("simple: adding self edge") } if _, ok := g.nodes[fid]; !ok { g.AddNode(from) } else { g.nodes[fid] = from } if _, ok := g.nodes[tid]; !ok { g.AddNode(to) } else { g.nodes[tid] = to } if fm, ok := g.from[fid]; ok { fm[tid] = e } else { g.from[fid] = map[int64]graph.Edge{tid: e} } if tm, ok := g.to[tid]; ok { tm[fid] = e } else { g.to[tid] = map[int64]graph.Edge{fid: e} } } // To returns all nodes in g that can reach directly to n. func (g *DirectedGraph) To(id int64) graph.Nodes { if _, ok := g.to[id]; !ok { return graph.Empty } to := make([]graph.Node, len(g.to[id])) i := 0 for uid := range g.to[id] { to[i] = g.nodes[uid] i++ } if len(to) == 0 { return graph.Empty } return iterator.NewOrderedNodes(to) }