/* Copyright 2015 The Kubernetes Authors. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package e2e import ( "fmt" "math" "os" "sort" "strconv" "sync" "time" "k8s.io/kubernetes/pkg/api" "k8s.io/kubernetes/pkg/api/resource" "k8s.io/kubernetes/pkg/api/unversioned" "k8s.io/kubernetes/pkg/client/cache" "k8s.io/kubernetes/pkg/client/clientset_generated/internalclientset" client "k8s.io/kubernetes/pkg/client/unversioned" "k8s.io/kubernetes/pkg/fields" "k8s.io/kubernetes/pkg/labels" "k8s.io/kubernetes/pkg/runtime" "k8s.io/kubernetes/pkg/util/sets" utiluuid "k8s.io/kubernetes/pkg/util/uuid" "k8s.io/kubernetes/pkg/util/workqueue" "k8s.io/kubernetes/pkg/watch" "k8s.io/kubernetes/test/e2e/framework" . "github.com/onsi/ginkgo" . "github.com/onsi/gomega" ) const ( MinSaturationThreshold = 2 * time.Minute MinPodsPerSecondThroughput = 8 ) // Maximum container failures this test tolerates before failing. var MaxContainerFailures = 0 type DensityTestConfig struct { Configs []framework.RCConfig Client *client.Client ClientSet internalclientset.Interface Namespace string PollInterval time.Duration PodCount int Timeout time.Duration } func density30AddonResourceVerifier(numNodes int) map[string]framework.ResourceConstraint { var apiserverMem uint64 var controllerMem uint64 var schedulerMem uint64 apiserverCPU := math.MaxFloat32 apiserverMem = math.MaxUint64 controllerCPU := math.MaxFloat32 controllerMem = math.MaxUint64 schedulerCPU := math.MaxFloat32 schedulerMem = math.MaxUint64 framework.Logf("Setting resource constraings for provider: %s", framework.TestContext.Provider) if framework.ProviderIs("kubemark") { if numNodes <= 5 { apiserverCPU = 0.35 apiserverMem = 150 * (1024 * 1024) controllerCPU = 0.1 controllerMem = 100 * (1024 * 1024) schedulerCPU = 0.05 schedulerMem = 50 * (1024 * 1024) } else if numNodes <= 100 { apiserverCPU = 1.5 apiserverMem = 1500 * (1024 * 1024) controllerCPU = 0.75 controllerMem = 750 * (1024 * 1024) schedulerCPU = 0.75 schedulerMem = 500 * (1024 * 1024) } else if numNodes <= 500 { apiserverCPU = 2.5 apiserverMem = 3400 * (1024 * 1024) controllerCPU = 1.3 controllerMem = 1100 * (1024 * 1024) schedulerCPU = 1.5 schedulerMem = 500 * (1024 * 1024) } else if numNodes <= 1000 { apiserverCPU = 4 apiserverMem = 4000 * (1024 * 1024) controllerCPU = 3 controllerMem = 2000 * (1024 * 1024) schedulerCPU = 1.5 schedulerMem = 750 * (1024 * 1024) } } else { if numNodes <= 100 { // TODO: Investigate higher apiserver consumption and // potentially revert to 1.5cpu and 1.3GB - see #30871 apiserverCPU = 1.8 apiserverMem = 2200 * (1024 * 1024) controllerCPU = 0.5 controllerMem = 300 * (1024 * 1024) schedulerCPU = 0.4 schedulerMem = 150 * (1024 * 1024) } } constraints := make(map[string]framework.ResourceConstraint) constraints["fluentd-elasticsearch"] = framework.ResourceConstraint{ CPUConstraint: 0.2, MemoryConstraint: 250 * (1024 * 1024), } constraints["elasticsearch-logging"] = framework.ResourceConstraint{ CPUConstraint: 2, // TODO: bring it down to 750MB again, when we lower Kubelet verbosity level. I.e. revert #19164 MemoryConstraint: 5000 * (1024 * 1024), } constraints["heapster"] = framework.ResourceConstraint{ CPUConstraint: 2, MemoryConstraint: 1800 * (1024 * 1024), } constraints["kibana-logging"] = framework.ResourceConstraint{ CPUConstraint: 0.2, MemoryConstraint: 100 * (1024 * 1024), } constraints["kube-proxy"] = framework.ResourceConstraint{ CPUConstraint: 0.1, MemoryConstraint: 20 * (1024 * 1024), } constraints["l7-lb-controller"] = framework.ResourceConstraint{ CPUConstraint: 0.15, MemoryConstraint: 60 * (1024 * 1024), } constraints["influxdb"] = framework.ResourceConstraint{ CPUConstraint: 2, MemoryConstraint: 500 * (1024 * 1024), } constraints["kube-apiserver"] = framework.ResourceConstraint{ CPUConstraint: apiserverCPU, MemoryConstraint: apiserverMem, } constraints["kube-controller-manager"] = framework.ResourceConstraint{ CPUConstraint: controllerCPU, MemoryConstraint: controllerMem, } constraints["kube-scheduler"] = framework.ResourceConstraint{ CPUConstraint: schedulerCPU, MemoryConstraint: schedulerMem, } return constraints } func logPodStartupStatus(c *client.Client, expectedPods int, ns string, observedLabels map[string]string, period time.Duration, stopCh chan struct{}) { label := labels.SelectorFromSet(labels.Set(observedLabels)) podStore := framework.NewPodStore(c, ns, label, fields.Everything()) defer podStore.Stop() ticker := time.NewTicker(period) defer ticker.Stop() for { select { case <-ticker.C: pods := podStore.List() startupStatus := framework.ComputeRCStartupStatus(pods, expectedPods) framework.Logf(startupStatus.String("Density")) case <-stopCh: pods := podStore.List() startupStatus := framework.ComputeRCStartupStatus(pods, expectedPods) framework.Logf(startupStatus.String("Density")) return } } } // runDensityTest will perform a density test and return the time it took for // all pods to start func runDensityTest(dtc DensityTestConfig) time.Duration { defer GinkgoRecover() // Create a listener for events. // eLock is a lock protects the events var eLock sync.Mutex events := make([](*api.Event), 0) _, controller := cache.NewInformer( &cache.ListWatch{ ListFunc: func(options api.ListOptions) (runtime.Object, error) { return dtc.Client.Events(dtc.Namespace).List(options) }, WatchFunc: func(options api.ListOptions) (watch.Interface, error) { return dtc.Client.Events(dtc.Namespace).Watch(options) }, }, &api.Event{}, 0, cache.ResourceEventHandlerFuncs{ AddFunc: func(obj interface{}) { eLock.Lock() defer eLock.Unlock() events = append(events, obj.(*api.Event)) }, }, ) stop := make(chan struct{}) go controller.Run(stop) // Create a listener for api updates // uLock is a lock protects the updateCount var uLock sync.Mutex updateCount := 0 label := labels.SelectorFromSet(labels.Set(map[string]string{"type": "densityPod"})) _, updateController := cache.NewInformer( &cache.ListWatch{ ListFunc: func(options api.ListOptions) (runtime.Object, error) { options.LabelSelector = label return dtc.Client.Pods(dtc.Namespace).List(options) }, WatchFunc: func(options api.ListOptions) (watch.Interface, error) { options.LabelSelector = label return dtc.Client.Pods(dtc.Namespace).Watch(options) }, }, &api.Pod{}, 0, cache.ResourceEventHandlerFuncs{ UpdateFunc: func(_, _ interface{}) { uLock.Lock() defer uLock.Unlock() updateCount++ }, }, ) go updateController.Run(stop) // Start all replication controllers. startTime := time.Now() wg := sync.WaitGroup{} wg.Add(len(dtc.Configs)) for i := range dtc.Configs { rcConfig := dtc.Configs[i] go func() { framework.ExpectNoError(framework.RunRC(rcConfig)) wg.Done() }() } logStopCh := make(chan struct{}) go logPodStartupStatus(dtc.Client, dtc.PodCount, dtc.Namespace, map[string]string{"type": "densityPod"}, dtc.PollInterval, logStopCh) wg.Wait() startupTime := time.Now().Sub(startTime) close(logStopCh) framework.Logf("E2E startup time for %d pods: %v", dtc.PodCount, startupTime) framework.Logf("Throughput (pods/s) during cluster saturation phase: %v", float32(dtc.PodCount)/float32(startupTime/time.Second)) By("Waiting for all events to be recorded") last := -1 current := len(events) lastCount := -1 currentCount := updateCount for start := time.Now(); (last < current || lastCount < currentCount) && time.Since(start) < dtc.Timeout; time.Sleep(10 * time.Second) { func() { eLock.Lock() defer eLock.Unlock() last = current current = len(events) }() func() { uLock.Lock() defer uLock.Unlock() lastCount = currentCount currentCount = updateCount }() } close(stop) if current != last { framework.Logf("Warning: Not all events were recorded after waiting %.2f minutes", dtc.Timeout.Minutes()) } framework.Logf("Found %d events", current) if currentCount != lastCount { framework.Logf("Warning: Not all updates were recorded after waiting %.2f minutes", dtc.Timeout.Minutes()) } framework.Logf("Found %d updates", currentCount) // Tune the threshold for allowed failures. badEvents := framework.BadEvents(events) Expect(badEvents).NotTo(BeNumerically(">", int(math.Floor(0.01*float64(dtc.PodCount))))) // Print some data about Pod to Node allocation By("Printing Pod to Node allocation data") podList, err := dtc.Client.Pods(api.NamespaceAll).List(api.ListOptions{}) framework.ExpectNoError(err) pausePodAllocation := make(map[string]int) systemPodAllocation := make(map[string][]string) for _, pod := range podList.Items { if pod.Namespace == api.NamespaceSystem { systemPodAllocation[pod.Spec.NodeName] = append(systemPodAllocation[pod.Spec.NodeName], pod.Name) } else { pausePodAllocation[pod.Spec.NodeName]++ } } nodeNames := make([]string, 0) for k := range pausePodAllocation { nodeNames = append(nodeNames, k) } sort.Strings(nodeNames) for _, node := range nodeNames { framework.Logf("%v: %v pause pods, system pods: %v", node, pausePodAllocation[node], systemPodAllocation[node]) } return startupTime } func cleanupDensityTest(dtc DensityTestConfig) { defer GinkgoRecover() By("Deleting ReplicationController") // We explicitly delete all pods to have API calls necessary for deletion accounted in metrics. for i := range dtc.Configs { rcName := dtc.Configs[i].Name rc, err := dtc.Client.ReplicationControllers(dtc.Namespace).Get(rcName) if err == nil && rc.Spec.Replicas != 0 { if framework.TestContext.GarbageCollectorEnabled { By("Cleaning up only the replication controller, garbage collector will clean up the pods") err := framework.DeleteRCAndWaitForGC(dtc.Client, dtc.Namespace, rcName) framework.ExpectNoError(err) } else { By("Cleaning up the replication controller and pods") err := framework.DeleteRCAndPods(dtc.Client, dtc.ClientSet, dtc.Namespace, rcName) framework.ExpectNoError(err) } } } } // This test suite can take a long time to run, and can affect or be affected by other tests. // So by default it is added to the ginkgo.skip list (see driver.go). // To run this suite you must explicitly ask for it by setting the // -t/--test flag or ginkgo.focus flag. // IMPORTANT: This test is designed to work on large (>= 100 Nodes) clusters. For smaller ones // results will not be representative for control-plane performance as we'll start hitting // limits on Docker's concurrent container startup. var _ = framework.KubeDescribe("Density", func() { var c *client.Client var nodeCount int var RCName string var additionalPodsPrefix string var ns string var uuid string var e2eStartupTime time.Duration var totalPods int var nodeCpuCapacity int64 var nodeMemCapacity int64 var nodes *api.NodeList var masters sets.String // Gathers data prior to framework namespace teardown AfterEach(func() { saturationThreshold := time.Duration((totalPods / MinPodsPerSecondThroughput)) * time.Second if saturationThreshold < MinSaturationThreshold { saturationThreshold = MinSaturationThreshold } Expect(e2eStartupTime).NotTo(BeNumerically(">", saturationThreshold)) saturationData := framework.SaturationTime{ TimeToSaturate: e2eStartupTime, NumberOfNodes: nodeCount, NumberOfPods: totalPods, Throughput: float32(totalPods) / float32(e2eStartupTime/time.Second), } framework.Logf("Cluster saturation time: %s", framework.PrettyPrintJSON(saturationData)) // Verify latency metrics. highLatencyRequests, err := framework.HighLatencyRequests(c) framework.ExpectNoError(err) Expect(highLatencyRequests).NotTo(BeNumerically(">", 0), "There should be no high-latency requests") // Verify scheduler metrics. // TODO: Reset metrics at the beginning of the test. // We should do something similar to how we do it for APIserver. framework.ExpectNoError(framework.VerifySchedulerLatency(c)) }) // Explicitly put here, to delete namespace at the end of the test // (after measuring latency metrics, etc.). f := framework.NewDefaultFramework("density") f.NamespaceDeletionTimeout = time.Hour BeforeEach(func() { c = f.Client ns = f.Namespace.Name // In large clusters we may get to this point but still have a bunch // of nodes without Routes created. Since this would make a node // unschedulable, we need to wait until all of them are schedulable. framework.ExpectNoError(framework.WaitForAllNodesSchedulable(c)) masters, nodes = framework.GetMasterAndWorkerNodesOrDie(c) nodeCount = len(nodes.Items) Expect(nodeCount).NotTo(BeZero()) nodeCpuCapacity = nodes.Items[0].Status.Allocatable.Cpu().MilliValue() nodeMemCapacity = nodes.Items[0].Status.Allocatable.Memory().Value() // Terminating a namespace (deleting the remaining objects from it - which // generally means events) can affect the current run. Thus we wait for all // terminating namespace to be finally deleted before starting this test. err := framework.CheckTestingNSDeletedExcept(c, ns) framework.ExpectNoError(err) uuid = string(utiluuid.NewUUID()) framework.ExpectNoError(framework.ResetMetrics(c)) framework.ExpectNoError(os.Mkdir(fmt.Sprintf(framework.TestContext.OutputDir+"/%s", uuid), 0777)) framework.Logf("Listing nodes for easy debugging:\n") for _, node := range nodes.Items { var internalIP, externalIP string for _, address := range node.Status.Addresses { if address.Type == api.NodeInternalIP { internalIP = address.Address } if address.Type == api.NodeExternalIP { externalIP = address.Address } } framework.Logf("Name: %v, clusterIP: %v, externalIP: %v", node.ObjectMeta.Name, internalIP, externalIP) } }) type Density struct { // Controls if e2e latency tests should be run (they are slow) runLatencyTest bool podsPerNode int // Controls how often the apiserver is polled for pods interval time.Duration } densityTests := []Density{ // TODO: Expose runLatencyTest as ginkgo flag. {podsPerNode: 3, runLatencyTest: false, interval: 10 * time.Second}, {podsPerNode: 30, runLatencyTest: true, interval: 10 * time.Second}, {podsPerNode: 50, runLatencyTest: false, interval: 10 * time.Second}, {podsPerNode: 95, runLatencyTest: true, interval: 10 * time.Second}, {podsPerNode: 100, runLatencyTest: false, interval: 10 * time.Second}, } for _, testArg := range densityTests { name := fmt.Sprintf("should allow starting %d pods per node", testArg.podsPerNode) switch testArg.podsPerNode { case 30: name = "[Feature:Performance] " + name case 95: name = "[Feature:HighDensityPerformance]" + name default: name = "[Feature:ManualPerformance] " + name } itArg := testArg It(name, func() { podsPerNode := itArg.podsPerNode if podsPerNode == 30 { f.AddonResourceConstraints = func() map[string]framework.ResourceConstraint { return density30AddonResourceVerifier(nodeCount) }() } totalPods = podsPerNode * nodeCount fileHndl, err := os.Create(fmt.Sprintf(framework.TestContext.OutputDir+"/%s/pod_states.csv", uuid)) framework.ExpectNoError(err) defer fileHndl.Close() timeout := 10 * time.Minute // TODO: loop to podsPerNode instead of 1 when we're ready. numberOrRCs := 1 RCConfigs := make([]framework.RCConfig, numberOrRCs) for i := 0; i < numberOrRCs; i++ { RCName := "density" + strconv.Itoa(totalPods) + "-" + strconv.Itoa(i) + "-" + uuid RCConfigs[i] = framework.RCConfig{Client: c, Image: framework.GetPauseImageName(f.Client), Name: RCName, Namespace: ns, Labels: map[string]string{"type": "densityPod"}, PollInterval: itArg.interval, PodStatusFile: fileHndl, Replicas: (totalPods + numberOrRCs - 1) / numberOrRCs, CpuRequest: nodeCpuCapacity / 100, MemRequest: nodeMemCapacity / 100, MaxContainerFailures: &MaxContainerFailures, Silent: true, } } dConfig := DensityTestConfig{ Client: c, ClientSet: f.ClientSet, Configs: RCConfigs, PodCount: totalPods, Namespace: ns, PollInterval: itArg.interval, Timeout: timeout, } e2eStartupTime = runDensityTest(dConfig) if itArg.runLatencyTest { By("Scheduling additional Pods to measure startup latencies") createTimes := make(map[string]unversioned.Time, 0) nodes := make(map[string]string, 0) scheduleTimes := make(map[string]unversioned.Time, 0) runTimes := make(map[string]unversioned.Time, 0) watchTimes := make(map[string]unversioned.Time, 0) var mutex sync.Mutex checkPod := func(p *api.Pod) { mutex.Lock() defer mutex.Unlock() defer GinkgoRecover() if p.Status.Phase == api.PodRunning { if _, found := watchTimes[p.Name]; !found { watchTimes[p.Name] = unversioned.Now() createTimes[p.Name] = p.CreationTimestamp nodes[p.Name] = p.Spec.NodeName var startTime unversioned.Time for _, cs := range p.Status.ContainerStatuses { if cs.State.Running != nil { if startTime.Before(cs.State.Running.StartedAt) { startTime = cs.State.Running.StartedAt } } } if startTime != unversioned.NewTime(time.Time{}) { runTimes[p.Name] = startTime } else { framework.Failf("Pod %v is reported to be running, but none of its containers is", p.Name) } } } } additionalPodsPrefix = "density-latency-pod" latencyPodsStore, controller := cache.NewInformer( &cache.ListWatch{ ListFunc: func(options api.ListOptions) (runtime.Object, error) { options.LabelSelector = labels.SelectorFromSet(labels.Set{"type": additionalPodsPrefix}) return c.Pods(ns).List(options) }, WatchFunc: func(options api.ListOptions) (watch.Interface, error) { options.LabelSelector = labels.SelectorFromSet(labels.Set{"type": additionalPodsPrefix}) return c.Pods(ns).Watch(options) }, }, &api.Pod{}, 0, cache.ResourceEventHandlerFuncs{ AddFunc: func(obj interface{}) { p, ok := obj.(*api.Pod) Expect(ok).To(Equal(true)) go checkPod(p) }, UpdateFunc: func(oldObj, newObj interface{}) { p, ok := newObj.(*api.Pod) Expect(ok).To(Equal(true)) go checkPod(p) }, }, ) stopCh := make(chan struct{}) go controller.Run(stopCh) // Create some additional pods with throughput ~5 pods/sec. var wg sync.WaitGroup wg.Add(nodeCount) // Explicitly set requests here. // Thanks to it we trigger increasing priority function by scheduling // a pod to a node, which in turn will result in spreading latency pods // more evenly between nodes. cpuRequest := *resource.NewMilliQuantity(nodeCpuCapacity/5, resource.DecimalSI) memRequest := *resource.NewQuantity(nodeMemCapacity/5, resource.DecimalSI) if podsPerNode > 30 { // This is to make them schedulable on high-density tests // (e.g. 100 pods/node kubemark). cpuRequest = *resource.NewMilliQuantity(0, resource.DecimalSI) memRequest = *resource.NewQuantity(0, resource.DecimalSI) } for i := 1; i <= nodeCount; i++ { name := additionalPodsPrefix + "-" + strconv.Itoa(i) go createRunningPodFromRC(&wg, c, name, ns, framework.GetPauseImageName(f.Client), additionalPodsPrefix, cpuRequest, memRequest) time.Sleep(200 * time.Millisecond) } wg.Wait() By("Waiting for all Pods begin observed by the watch...") for start := time.Now(); len(watchTimes) < nodeCount; time.Sleep(10 * time.Second) { if time.Since(start) < timeout { framework.Failf("Timeout reached waiting for all Pods being observed by the watch.") } } close(stopCh) nodeToLatencyPods := make(map[string]int) for _, item := range latencyPodsStore.List() { pod := item.(*api.Pod) nodeToLatencyPods[pod.Spec.NodeName]++ } for node, count := range nodeToLatencyPods { if count > 1 { framework.Logf("%d latency pods scheduled on %s", count, node) } } selector := fields.Set{ "involvedObject.kind": "Pod", "involvedObject.namespace": ns, "source": api.DefaultSchedulerName, }.AsSelector() options := api.ListOptions{FieldSelector: selector} schedEvents, err := c.Events(ns).List(options) framework.ExpectNoError(err) for k := range createTimes { for _, event := range schedEvents.Items { if event.InvolvedObject.Name == k { scheduleTimes[k] = event.FirstTimestamp break } } } scheduleLag := make([]framework.PodLatencyData, 0) startupLag := make([]framework.PodLatencyData, 0) watchLag := make([]framework.PodLatencyData, 0) schedToWatchLag := make([]framework.PodLatencyData, 0) e2eLag := make([]framework.PodLatencyData, 0) for name, create := range createTimes { sched, ok := scheduleTimes[name] Expect(ok).To(Equal(true)) run, ok := runTimes[name] Expect(ok).To(Equal(true)) watch, ok := watchTimes[name] Expect(ok).To(Equal(true)) node, ok := nodes[name] Expect(ok).To(Equal(true)) scheduleLag = append(scheduleLag, framework.PodLatencyData{Name: name, Node: node, Latency: sched.Time.Sub(create.Time)}) startupLag = append(startupLag, framework.PodLatencyData{Name: name, Node: node, Latency: run.Time.Sub(sched.Time)}) watchLag = append(watchLag, framework.PodLatencyData{Name: name, Node: node, Latency: watch.Time.Sub(run.Time)}) schedToWatchLag = append(schedToWatchLag, framework.PodLatencyData{Name: name, Node: node, Latency: watch.Time.Sub(sched.Time)}) e2eLag = append(e2eLag, framework.PodLatencyData{Name: name, Node: node, Latency: watch.Time.Sub(create.Time)}) } sort.Sort(framework.LatencySlice(scheduleLag)) sort.Sort(framework.LatencySlice(startupLag)) sort.Sort(framework.LatencySlice(watchLag)) sort.Sort(framework.LatencySlice(schedToWatchLag)) sort.Sort(framework.LatencySlice(e2eLag)) framework.PrintLatencies(scheduleLag, "worst schedule latencies") framework.PrintLatencies(startupLag, "worst run-after-schedule latencies") framework.PrintLatencies(watchLag, "worst watch latencies") framework.PrintLatencies(schedToWatchLag, "worst scheduled-to-end total latencies") framework.PrintLatencies(e2eLag, "worst e2e total latencies") // Test whether e2e pod startup time is acceptable. podStartupLatency := framework.PodStartupLatency{Latency: framework.ExtractLatencyMetrics(e2eLag)} framework.ExpectNoError(framework.VerifyPodStartupLatency(podStartupLatency)) framework.LogSuspiciousLatency(startupLag, e2eLag, nodeCount, c) By("Removing additional replication controllers") deleteRC := func(i int) { name := additionalPodsPrefix + "-" + strconv.Itoa(i+1) framework.ExpectNoError(framework.DeleteRCAndWaitForGC(c, ns, name)) } workqueue.Parallelize(16, nodeCount, deleteRC) } cleanupDensityTest(dConfig) }) } // Calculate total number of pods from each node's max-pod It("[Feature:ManualPerformance] should allow running maximum capacity pods on nodes", func() { totalPods = 0 for _, n := range nodes.Items { totalPods += int(n.Status.Capacity.Pods().Value()) } totalPods -= framework.WaitForStableCluster(c, masters) fileHndl, err := os.Create(fmt.Sprintf(framework.TestContext.OutputDir+"/%s/pod_states.csv", uuid)) framework.ExpectNoError(err) defer fileHndl.Close() rcCnt := 1 RCConfigs := make([]framework.RCConfig, rcCnt) podsPerRC := int(totalPods / rcCnt) for i := 0; i < rcCnt; i++ { if i == rcCnt-1 { podsPerRC += int(math.Mod(float64(totalPods), float64(rcCnt))) } RCName = "density" + strconv.Itoa(totalPods) + "-" + strconv.Itoa(i) + "-" + uuid RCConfigs[i] = framework.RCConfig{Client: c, Image: framework.GetPauseImageName(f.Client), Name: RCName, Namespace: ns, Labels: map[string]string{"type": "densityPod"}, PollInterval: 10 * time.Second, PodStatusFile: fileHndl, Replicas: podsPerRC, MaxContainerFailures: &MaxContainerFailures, Silent: true, } } dConfig := DensityTestConfig{ Client: c, ClientSet: f.ClientSet, Configs: RCConfigs, PodCount: totalPods, Namespace: ns, PollInterval: 10 * time.Second, Timeout: 10 * time.Minute, } e2eStartupTime = runDensityTest(dConfig) cleanupDensityTest(dConfig) }) }) func createRunningPodFromRC(wg *sync.WaitGroup, c *client.Client, name, ns, image, podType string, cpuRequest, memRequest resource.Quantity) { defer GinkgoRecover() defer wg.Done() labels := map[string]string{ "type": podType, "name": name, } rc := &api.ReplicationController{ ObjectMeta: api.ObjectMeta{ Name: name, Labels: labels, }, Spec: api.ReplicationControllerSpec{ Replicas: 1, Selector: labels, Template: &api.PodTemplateSpec{ ObjectMeta: api.ObjectMeta{ Labels: labels, }, Spec: api.PodSpec{ Containers: []api.Container{ { Name: name, Image: image, Resources: api.ResourceRequirements{ Requests: api.ResourceList{ api.ResourceCPU: cpuRequest, api.ResourceMemory: memRequest, }, }, }, }, DNSPolicy: api.DNSDefault, }, }, }, } _, err := c.ReplicationControllers(ns).Create(rc) framework.ExpectNoError(err) framework.ExpectNoError(framework.WaitForRCPodsRunning(c, ns, name)) framework.Logf("Found pod '%s' running", name) }