Move scheduling Heap in to scheduler.core.utils

The Heap data structure is useful for our backoff system in addition to
scheduling queue. Move it to somewhere it can be consumed by both
systems and properly export needed names. Also adding unit tests
from client-go/tools/cache/heap.go.
pull/564/head
Gregory Haynes 2017-12-09 23:09:48 +00:00
parent 3b53ea5ea4
commit c821f2ed2f
5 changed files with 503 additions and 203 deletions

View File

@ -27,7 +27,6 @@ limitations under the License.
package queue
import (
"container/heap"
"fmt"
"reflect"
"sync"
@ -184,7 +183,7 @@ type PriorityQueue struct {
// activeQ is heap structure that scheduler actively looks at to find pods to
// schedule. Head of heap is the highest priority pod.
activeQ *Heap
activeQ *util.Heap
// unschedulableQ holds pods that have been tried and determined unschedulable.
unschedulableQ *UnschedulablePodsMap
// nominatedPods is a map keyed by a node name and the value is a list of
@ -230,7 +229,7 @@ func activeQComp(pod1, pod2 interface{}) bool {
// NewPriorityQueue creates a PriorityQueue object.
func NewPriorityQueue() *PriorityQueue {
pq := &PriorityQueue{
activeQ: newHeap(cache.MetaNamespaceKeyFunc, activeQComp),
activeQ: util.NewHeap(cache.MetaNamespaceKeyFunc, activeQComp),
unschedulableQ: newUnschedulablePodsMap(),
nominatedPods: map[string][]*v1.Pod{},
}
@ -355,7 +354,7 @@ func (p *PriorityQueue) AddUnschedulableIfNotPresent(pod *v1.Pod) error {
func (p *PriorityQueue) Pop() (*v1.Pod, error) {
p.lock.Lock()
defer p.lock.Unlock()
for len(p.activeQ.data.queue) == 0 {
for p.activeQ.Len() == 0 {
// When the queue is empty, invocation of Pop() is blocked until new item is enqueued.
// When Close() is called, the p.closed is set and the condition is broadcast,
// which causes this loop to continue and return from the Pop().
@ -591,200 +590,3 @@ func newUnschedulablePodsMap() *UnschedulablePodsMap {
keyFunc: util.GetPodFullName,
}
}
// Below is the implementation of the a heap. The logic is pretty much the same
// as cache.heap, however, this heap does not perform synchronization. It leaves
// synchronization to the SchedulingQueue.
// LessFunc is a function type to compare two objects.
type LessFunc func(interface{}, interface{}) bool
// KeyFunc is a function type to get the key from an object.
type KeyFunc func(obj interface{}) (string, error)
type heapItem struct {
obj interface{} // The object which is stored in the heap.
index int // The index of the object's key in the Heap.queue.
}
type itemKeyValue struct {
key string
obj interface{}
}
// heapData is an internal struct that implements the standard heap interface
// and keeps the data stored in the heap.
type heapData struct {
// items is a map from key of the objects to the objects and their index.
// We depend on the property that items in the map are in the queue and vice versa.
items map[string]*heapItem
// queue implements a heap data structure and keeps the order of elements
// according to the heap invariant. The queue keeps the keys of objects stored
// in "items".
queue []string
// keyFunc is used to make the key used for queued item insertion and retrieval, and
// should be deterministic.
keyFunc KeyFunc
// lessFunc is used to compare two objects in the heap.
lessFunc LessFunc
}
var (
_ = heap.Interface(&heapData{}) // heapData is a standard heap
)
// Less compares two objects and returns true if the first one should go
// in front of the second one in the heap.
func (h *heapData) Less(i, j int) bool {
if i > len(h.queue) || j > len(h.queue) {
return false
}
itemi, ok := h.items[h.queue[i]]
if !ok {
return false
}
itemj, ok := h.items[h.queue[j]]
if !ok {
return false
}
return h.lessFunc(itemi.obj, itemj.obj)
}
// Len returns the number of items in the Heap.
func (h *heapData) Len() int { return len(h.queue) }
// Swap implements swapping of two elements in the heap. This is a part of standard
// heap interface and should never be called directly.
func (h *heapData) Swap(i, j int) {
h.queue[i], h.queue[j] = h.queue[j], h.queue[i]
item := h.items[h.queue[i]]
item.index = i
item = h.items[h.queue[j]]
item.index = j
}
// Push is supposed to be called by heap.Push only.
func (h *heapData) Push(kv interface{}) {
keyValue := kv.(*itemKeyValue)
n := len(h.queue)
h.items[keyValue.key] = &heapItem{keyValue.obj, n}
h.queue = append(h.queue, keyValue.key)
}
// Pop is supposed to be called by heap.Pop only.
func (h *heapData) Pop() interface{} {
key := h.queue[len(h.queue)-1]
h.queue = h.queue[0 : len(h.queue)-1]
item, ok := h.items[key]
if !ok {
// This is an error
return nil
}
delete(h.items, key)
return item.obj
}
// Heap is a producer/consumer queue that implements a heap data structure.
// It can be used to implement priority queues and similar data structures.
type Heap struct {
// data stores objects and has a queue that keeps their ordering according
// to the heap invariant.
data *heapData
}
// Add inserts an item, and puts it in the queue. The item is updated if it
// already exists.
func (h *Heap) Add(obj interface{}) error {
key, err := h.data.keyFunc(obj)
if err != nil {
return cache.KeyError{Obj: obj, Err: err}
}
if _, exists := h.data.items[key]; exists {
h.data.items[key].obj = obj
heap.Fix(h.data, h.data.items[key].index)
} else {
heap.Push(h.data, &itemKeyValue{key, obj})
}
return nil
}
// AddIfNotPresent inserts an item, and puts it in the queue. If an item with
// the key is present in the map, no changes is made to the item.
func (h *Heap) AddIfNotPresent(obj interface{}) error {
key, err := h.data.keyFunc(obj)
if err != nil {
return cache.KeyError{Obj: obj, Err: err}
}
if _, exists := h.data.items[key]; !exists {
heap.Push(h.data, &itemKeyValue{key, obj})
}
return nil
}
// Update is the same as Add in this implementation. When the item does not
// exist, it is added.
func (h *Heap) Update(obj interface{}) error {
return h.Add(obj)
}
// Delete removes an item.
func (h *Heap) Delete(obj interface{}) error {
key, err := h.data.keyFunc(obj)
if err != nil {
return cache.KeyError{Obj: obj, Err: err}
}
if item, ok := h.data.items[key]; ok {
heap.Remove(h.data, item.index)
return nil
}
return fmt.Errorf("object not found")
}
// Pop returns the head of the heap.
func (h *Heap) Pop() (interface{}, error) {
obj := heap.Pop(h.data)
if obj != nil {
return obj, nil
}
return nil, fmt.Errorf("object was removed from heap data")
}
// Get returns the requested item, or sets exists=false.
func (h *Heap) Get(obj interface{}) (interface{}, bool, error) {
key, err := h.data.keyFunc(obj)
if err != nil {
return nil, false, cache.KeyError{Obj: obj, Err: err}
}
return h.GetByKey(key)
}
// GetByKey returns the requested item, or sets exists=false.
func (h *Heap) GetByKey(key string) (interface{}, bool, error) {
item, exists := h.data.items[key]
if !exists {
return nil, false, nil
}
return item.obj, true, nil
}
// List returns a list of all the items.
func (h *Heap) List() []interface{} {
list := make([]interface{}, 0, len(h.data.items))
for _, item := range h.data.items {
list = append(list, item.obj)
}
return list
}
// newHeap returns a Heap which can be used to queue up items to process.
func newHeap(keyFn KeyFunc, lessFn LessFunc) *Heap {
return &Heap{
data: &heapData{
items: map[string]*heapItem{},
queue: []string{},
keyFunc: keyFn,
lessFunc: lessFn,
},
}
}

View File

@ -199,7 +199,7 @@ func TestPriorityQueue_Update(t *testing.T) {
}
// Update highPriorityPod and add a nominatedNodeName to it.
q.Update(&highPriorityPod, &highPriNominatedPod)
if q.activeQ.data.Len() != 1 {
if q.activeQ.Len() != 1 {
t.Error("Expected only one item in activeQ.")
}
if len(q.nominatedPods) != 1 {
@ -250,7 +250,7 @@ func TestPriorityQueue_MoveAllToActiveQueue(t *testing.T) {
q.unschedulableQ.addOrUpdate(&unschedulablePod)
q.unschedulableQ.addOrUpdate(&highPriorityPod)
q.MoveAllToActiveQueue()
if q.activeQ.data.Len() != 3 {
if q.activeQ.Len() != 3 {
t.Error("Expected all items to be in activeQ.")
}
}

View File

@ -10,6 +10,8 @@ go_test(
name = "go_default_test",
srcs = [
"backoff_utils_test.go",
"heap_test.go",
"testutil_test.go",
"utils_test.go",
],
embed = [":go_default_library"],
@ -25,6 +27,8 @@ go_library(
name = "go_default_library",
srcs = [
"backoff_utils.go",
"heap.go",
"testutil.go",
"utils.go",
],
importpath = "k8s.io/kubernetes/pkg/scheduler/util",

223
pkg/scheduler/util/heap.go Normal file
View File

@ -0,0 +1,223 @@
/*
Copyright 2018 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
// Below is the implementation of the a heap. The logic is pretty much the same
// as cache.heap, however, this heap does not perform synchronization. It leaves
// synchronization to the SchedulingQueue.
package util
import (
"container/heap"
"fmt"
"k8s.io/client-go/tools/cache"
)
// KeyFunc is a function type to get the key from an object.
type KeyFunc func(obj interface{}) (string, error)
type heapItem struct {
obj interface{} // The object which is stored in the heap.
index int // The index of the object's key in the Heap.queue.
}
type itemKeyValue struct {
key string
obj interface{}
}
// heapData is an internal struct that implements the standard heap interface
// and keeps the data stored in the heap.
type heapData struct {
// items is a map from key of the objects to the objects and their index.
// We depend on the property that items in the map are in the queue and vice versa.
items map[string]*heapItem
// queue implements a heap data structure and keeps the order of elements
// according to the heap invariant. The queue keeps the keys of objects stored
// in "items".
queue []string
// keyFunc is used to make the key used for queued item insertion and retrieval, and
// should be deterministic.
keyFunc KeyFunc
// lessFunc is used to compare two objects in the heap.
lessFunc LessFunc
}
var (
_ = heap.Interface(&heapData{}) // heapData is a standard heap
)
// Less compares two objects and returns true if the first one should go
// in front of the second one in the heap.
func (h *heapData) Less(i, j int) bool {
if i > len(h.queue) || j > len(h.queue) {
return false
}
itemi, ok := h.items[h.queue[i]]
if !ok {
return false
}
itemj, ok := h.items[h.queue[j]]
if !ok {
return false
}
return h.lessFunc(itemi.obj, itemj.obj)
}
// Len returns the number of items in the Heap.
func (h *heapData) Len() int { return len(h.queue) }
// Swap implements swapping of two elements in the heap. This is a part of standard
// heap interface and should never be called directly.
func (h *heapData) Swap(i, j int) {
h.queue[i], h.queue[j] = h.queue[j], h.queue[i]
item := h.items[h.queue[i]]
item.index = i
item = h.items[h.queue[j]]
item.index = j
}
// Push is supposed to be called by heap.Push only.
func (h *heapData) Push(kv interface{}) {
keyValue := kv.(*itemKeyValue)
n := len(h.queue)
h.items[keyValue.key] = &heapItem{keyValue.obj, n}
h.queue = append(h.queue, keyValue.key)
}
// Pop is supposed to be called by heap.Pop only.
func (h *heapData) Pop() interface{} {
key := h.queue[len(h.queue)-1]
h.queue = h.queue[0 : len(h.queue)-1]
item, ok := h.items[key]
if !ok {
// This is an error
return nil
}
delete(h.items, key)
return item.obj
}
// Heap is a producer/consumer queue that implements a heap data structure.
// It can be used to implement priority queues and similar data structures.
type Heap struct {
// data stores objects and has a queue that keeps their ordering according
// to the heap invariant.
data *heapData
}
// Add inserts an item, and puts it in the queue. The item is updated if it
// already exists.
func (h *Heap) Add(obj interface{}) error {
key, err := h.data.keyFunc(obj)
if err != nil {
return cache.KeyError{Obj: obj, Err: err}
}
if _, exists := h.data.items[key]; exists {
h.data.items[key].obj = obj
heap.Fix(h.data, h.data.items[key].index)
} else {
heap.Push(h.data, &itemKeyValue{key, obj})
}
return nil
}
// AddIfNotPresent inserts an item, and puts it in the queue. If an item with
// the key is present in the map, no changes is made to the item.
func (h *Heap) AddIfNotPresent(obj interface{}) error {
key, err := h.data.keyFunc(obj)
if err != nil {
return cache.KeyError{Obj: obj, Err: err}
}
if _, exists := h.data.items[key]; !exists {
heap.Push(h.data, &itemKeyValue{key, obj})
}
return nil
}
// Update is the same as Add in this implementation. When the item does not
// exist, it is added.
func (h *Heap) Update(obj interface{}) error {
return h.Add(obj)
}
// Delete removes an item.
func (h *Heap) Delete(obj interface{}) error {
key, err := h.data.keyFunc(obj)
if err != nil {
return cache.KeyError{Obj: obj, Err: err}
}
if item, ok := h.data.items[key]; ok {
heap.Remove(h.data, item.index)
return nil
}
return fmt.Errorf("object not found")
}
// Pop returns the head of the heap.
func (h *Heap) Pop() (interface{}, error) {
obj := heap.Pop(h.data)
if obj != nil {
return obj, nil
}
return nil, fmt.Errorf("object was removed from heap data")
}
// Get returns the requested item, or sets exists=false.
func (h *Heap) Get(obj interface{}) (interface{}, bool, error) {
key, err := h.data.keyFunc(obj)
if err != nil {
return nil, false, cache.KeyError{Obj: obj, Err: err}
}
return h.GetByKey(key)
}
// GetByKey returns the requested item, or sets exists=false.
func (h *Heap) GetByKey(key string) (interface{}, bool, error) {
item, exists := h.data.items[key]
if !exists {
return nil, false, nil
}
return item.obj, true, nil
}
// List returns a list of all the items.
func (h *Heap) List() []interface{} {
list := make([]interface{}, 0, len(h.data.items))
for _, item := range h.data.items {
list = append(list, item.obj)
}
return list
}
// Len returns the number of items in the heap.
func (h *Heap) Len() int {
return len(h.data.queue)
}
// NewHeap returns a Heap which can be used to queue up items to process.
func NewHeap(keyFn KeyFunc, lessFn LessFunc) *Heap {
return &Heap{
data: &heapData{
items: map[string]*heapItem{},
queue: []string{},
keyFunc: keyFn,
lessFunc: lessFn,
},
}
}

View File

@ -0,0 +1,271 @@
/*
Copyright 2018 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
// This file was copied from client-go/tools/cache/heap.go and modified
// for our non thread-safe heap
package util
import (
"testing"
)
func testHeapObjectKeyFunc(obj interface{}) (string, error) {
return obj.(testHeapObject).name, nil
}
type testHeapObject struct {
name string
val interface{}
}
func mkHeapObj(name string, val interface{}) testHeapObject {
return testHeapObject{name: name, val: val}
}
func compareInts(val1 interface{}, val2 interface{}) bool {
first := val1.(testHeapObject).val.(int)
second := val2.(testHeapObject).val.(int)
return first < second
}
// TestHeapBasic tests Heap invariant
func TestHeapBasic(t *testing.T) {
h := NewHeap(testHeapObjectKeyFunc, compareInts)
const amount = 500
var i int
for i = amount; i > 0; i-- {
h.Add(mkHeapObj(string([]rune{'a', rune(i)}), i))
}
// Make sure that the numbers are popped in ascending order.
prevNum := 0
for i := 0; i < amount; i++ {
obj, err := h.Pop()
num := obj.(testHeapObject).val.(int)
// All the items must be sorted.
if err != nil || prevNum > num {
t.Errorf("got %v out of order, last was %v", obj, prevNum)
}
prevNum = num
}
}
// Tests Heap.Add and ensures that heap invariant is preserved after adding items.
func TestHeap_Add(t *testing.T) {
h := NewHeap(testHeapObjectKeyFunc, compareInts)
h.Add(mkHeapObj("foo", 10))
h.Add(mkHeapObj("bar", 1))
h.Add(mkHeapObj("baz", 11))
h.Add(mkHeapObj("zab", 30))
h.Add(mkHeapObj("foo", 13)) // This updates "foo".
item, err := h.Pop()
if e, a := 1, item.(testHeapObject).val; err != nil || a != e {
t.Fatalf("expected %d, got %d", e, a)
}
item, err = h.Pop()
if e, a := 11, item.(testHeapObject).val; err != nil || a != e {
t.Fatalf("expected %d, got %d", e, a)
}
h.Delete(mkHeapObj("baz", 11)) // Nothing is deleted.
h.Add(mkHeapObj("foo", 14)) // foo is updated.
item, err = h.Pop()
if e, a := 14, item.(testHeapObject).val; err != nil || a != e {
t.Fatalf("expected %d, got %d", e, a)
}
item, err = h.Pop()
if e, a := 30, item.(testHeapObject).val; err != nil || a != e {
t.Fatalf("expected %d, got %d", e, a)
}
}
// TestHeap_AddIfNotPresent tests Heap.AddIfNotPresent and ensures that heap
// invariant is preserved after adding items.
func TestHeap_AddIfNotPresent(t *testing.T) {
h := NewHeap(testHeapObjectKeyFunc, compareInts)
h.AddIfNotPresent(mkHeapObj("foo", 10))
h.AddIfNotPresent(mkHeapObj("bar", 1))
h.AddIfNotPresent(mkHeapObj("baz", 11))
h.AddIfNotPresent(mkHeapObj("zab", 30))
h.AddIfNotPresent(mkHeapObj("foo", 13)) // This is not added.
if len := len(h.data.items); len != 4 {
t.Errorf("unexpected number of items: %d", len)
}
if val := h.data.items["foo"].obj.(testHeapObject).val; val != 10 {
t.Errorf("unexpected value: %d", val)
}
item, err := h.Pop()
if e, a := 1, item.(testHeapObject).val; err != nil || a != e {
t.Fatalf("expected %d, got %d", e, a)
}
item, err = h.Pop()
if e, a := 10, item.(testHeapObject).val; err != nil || a != e {
t.Fatalf("expected %d, got %d", e, a)
}
// bar is already popped. Let's add another one.
h.AddIfNotPresent(mkHeapObj("bar", 14))
item, err = h.Pop()
if e, a := 11, item.(testHeapObject).val; err != nil || a != e {
t.Fatalf("expected %d, got %d", e, a)
}
item, err = h.Pop()
if e, a := 14, item.(testHeapObject).val; err != nil || a != e {
t.Fatalf("expected %d, got %d", e, a)
}
}
// TestHeap_Delete tests Heap.Delete and ensures that heap invariant is
// preserved after deleting items.
func TestHeap_Delete(t *testing.T) {
h := NewHeap(testHeapObjectKeyFunc, compareInts)
h.Add(mkHeapObj("foo", 10))
h.Add(mkHeapObj("bar", 1))
h.Add(mkHeapObj("bal", 31))
h.Add(mkHeapObj("baz", 11))
// Delete head. Delete should work with "key" and doesn't care about the value.
if err := h.Delete(mkHeapObj("bar", 200)); err != nil {
t.Fatalf("Failed to delete head.")
}
item, err := h.Pop()
if e, a := 10, item.(testHeapObject).val; err != nil || a != e {
t.Fatalf("expected %d, got %d", e, a)
}
h.Add(mkHeapObj("zab", 30))
h.Add(mkHeapObj("faz", 30))
len := h.data.Len()
// Delete non-existing item.
if err = h.Delete(mkHeapObj("non-existent", 10)); err == nil || len != h.data.Len() {
t.Fatalf("Didn't expect any item removal")
}
// Delete tail.
if err = h.Delete(mkHeapObj("bal", 31)); err != nil {
t.Fatalf("Failed to delete tail.")
}
// Delete one of the items with value 30.
if err = h.Delete(mkHeapObj("zab", 30)); err != nil {
t.Fatalf("Failed to delete item.")
}
item, err = h.Pop()
if e, a := 11, item.(testHeapObject).val; err != nil || a != e {
t.Fatalf("expected %d, got %d", e, a)
}
item, err = h.Pop()
if e, a := 30, item.(testHeapObject).val; err != nil || a != e {
t.Fatalf("expected %d, got %d", e, a)
}
if h.data.Len() != 0 {
t.Fatalf("expected an empty heap.")
}
}
// TestHeap_Update tests Heap.Update and ensures that heap invariant is
// preserved after adding items.
func TestHeap_Update(t *testing.T) {
h := NewHeap(testHeapObjectKeyFunc, compareInts)
h.Add(mkHeapObj("foo", 10))
h.Add(mkHeapObj("bar", 1))
h.Add(mkHeapObj("bal", 31))
h.Add(mkHeapObj("baz", 11))
// Update an item to a value that should push it to the head.
h.Update(mkHeapObj("baz", 0))
if h.data.queue[0] != "baz" || h.data.items["baz"].index != 0 {
t.Fatalf("expected baz to be at the head")
}
item, err := h.Pop()
if e, a := 0, item.(testHeapObject).val; err != nil || a != e {
t.Fatalf("expected %d, got %d", e, a)
}
// Update bar to push it farther back in the queue.
h.Update(mkHeapObj("bar", 100))
if h.data.queue[0] != "foo" || h.data.items["foo"].index != 0 {
t.Fatalf("expected foo to be at the head")
}
}
// TestHeap_Get tests Heap.Get.
func TestHeap_Get(t *testing.T) {
h := NewHeap(testHeapObjectKeyFunc, compareInts)
h.Add(mkHeapObj("foo", 10))
h.Add(mkHeapObj("bar", 1))
h.Add(mkHeapObj("bal", 31))
h.Add(mkHeapObj("baz", 11))
// Get works with the key.
obj, exists, err := h.Get(mkHeapObj("baz", 0))
if err != nil || exists == false || obj.(testHeapObject).val != 11 {
t.Fatalf("unexpected error in getting element")
}
// Get non-existing object.
_, exists, err = h.Get(mkHeapObj("non-existing", 0))
if err != nil || exists == true {
t.Fatalf("didn't expect to get any object")
}
}
// TestHeap_GetByKey tests Heap.GetByKey and is very similar to TestHeap_Get.
func TestHeap_GetByKey(t *testing.T) {
h := NewHeap(testHeapObjectKeyFunc, compareInts)
h.Add(mkHeapObj("foo", 10))
h.Add(mkHeapObj("bar", 1))
h.Add(mkHeapObj("bal", 31))
h.Add(mkHeapObj("baz", 11))
obj, exists, err := h.GetByKey("baz")
if err != nil || exists == false || obj.(testHeapObject).val != 11 {
t.Fatalf("unexpected error in getting element")
}
// Get non-existing object.
_, exists, err = h.GetByKey("non-existing")
if err != nil || exists == true {
t.Fatalf("didn't expect to get any object")
}
}
// TestHeap_List tests Heap.List function.
func TestHeap_List(t *testing.T) {
h := NewHeap(testHeapObjectKeyFunc, compareInts)
list := h.List()
if len(list) != 0 {
t.Errorf("expected an empty list")
}
items := map[string]int{
"foo": 10,
"bar": 1,
"bal": 30,
"baz": 11,
"faz": 30,
}
for k, v := range items {
h.Add(mkHeapObj(k, v))
}
list = h.List()
if len(list) != len(items) {
t.Errorf("expected %d items, got %d", len(items), len(list))
}
for _, obj := range list {
heapObj := obj.(testHeapObject)
v, ok := items[heapObj.name]
if !ok || v != heapObj.val {
t.Errorf("unexpected item in the list: %v", heapObj)
}
}
}