Eviction manager observes and acts on disk pressure

pull/6/head
derekwaynecarr 2016-07-22 15:23:09 -04:00
parent c669778333
commit c3324b88a0
9 changed files with 750 additions and 50 deletions

View File

@ -2069,6 +2069,8 @@ const (
NodeOutOfDisk NodeConditionType = "OutOfDisk"
// NodeMemoryPressure means the kubelet is under pressure due to insufficient available memory.
NodeMemoryPressure NodeConditionType = "MemoryPressure"
// NodeDiskPressure means the kubelet is under pressure due to insufficient available disk.
NodeDiskPressure NodeConditionType = "DiskPressure"
// NodeNetworkUnavailable means that network for the node is not correctly configured.
NodeNetworkUnavailable NodeConditionType = "NetworkUnavailable"
)

View File

@ -2470,6 +2470,8 @@ const (
NodeOutOfDisk NodeConditionType = "OutOfDisk"
// NodeMemoryPressure means the kubelet is under pressure due to insufficient available memory.
NodeMemoryPressure NodeConditionType = "MemoryPressure"
// NodeDiskPressure means the kubelet is under pressure due to insufficient available disk.
NodeDiskPressure NodeConditionType = "DiskPressure"
// NodeNetworkUnavailable means that network for the node is not correctly configured.
NodeNetworkUnavailable NodeConditionType = "NetworkUnavailable"
)

View File

@ -54,6 +54,8 @@ type managerImpl struct {
summaryProvider stats.SummaryProvider
// records when a threshold was first observed
thresholdsFirstObservedAt thresholdsObservedAt
// resourceToRankFunc maps a resource to ranking function for that resource.
resourceToRankFunc map[api.ResourceName]rankFunc
}
// ensure it implements the required interface
@ -87,12 +89,17 @@ func (m *managerImpl) Admit(attrs *lifecycle.PodAdmitAttributes) lifecycle.PodAd
if len(m.nodeConditions) == 0 {
return lifecycle.PodAdmitResult{Admit: true}
}
notBestEffort := qos.BestEffort != qos.GetPodQOS(attrs.Pod)
if notBestEffort {
return lifecycle.PodAdmitResult{Admit: true}
// the node has memory pressure, admit if not best-effort
if hasNodeCondition(m.nodeConditions, api.NodeMemoryPressure) {
notBestEffort := qos.BestEffort != qos.GetPodQOS(attrs.Pod)
if notBestEffort {
return lifecycle.PodAdmitResult{Admit: true}
}
}
// reject pods when under memory pressure (if pod is best effort), or if under disk pressure.
glog.Warningf("Failed to admit pod %v - %s", format.Pod(attrs.Pod), "node has conditions: %v", m.nodeConditions)
// we reject all best effort pods until we are stable.
return lifecycle.PodAdmitResult{
Admit: false,
Reason: reason,
@ -102,6 +109,14 @@ func (m *managerImpl) Admit(attrs *lifecycle.PodAdmitAttributes) lifecycle.PodAd
// Start starts the control loop to observe and response to low compute resources.
func (m *managerImpl) Start(diskInfoProvider DiskInfoProvider, podFunc ActivePodsFunc, monitoringInterval time.Duration) error {
// build the ranking functions now that we can know if the imagefs is dedicated or not.
hasDedicatedImageFs, err := diskInfoProvider.HasDedicatedImageFs()
if err != nil {
return err
}
m.resourceToRankFunc = buildResourceToRankFunc(hasDedicatedImageFs)
// start the eviction manager monitoring
go wait.Until(func() { m.synchronize(podFunc) }, monitoringInterval, wait.NeverStop)
return nil
}
@ -113,6 +128,13 @@ func (m *managerImpl) IsUnderMemoryPressure() bool {
return hasNodeCondition(m.nodeConditions, api.NodeMemoryPressure)
}
// IsUnderDiskPressure returns true if the node is under disk pressure.
func (m *managerImpl) IsUnderDiskPressure() bool {
m.RLock()
defer m.RUnlock()
return hasNodeCondition(m.nodeConditions, api.NodeDiskPressure)
}
// synchronize is the main control loop that enforces eviction thresholds.
func (m *managerImpl) synchronize(podFunc ActivePodsFunc) {
// if we have nothing to do, just return
@ -175,7 +197,7 @@ func (m *managerImpl) synchronize(podFunc ActivePodsFunc) {
m.recorder.Eventf(m.nodeRef, api.EventTypeWarning, "EvictionThresholdMet", "Attempting to reclaim %s", resourceToReclaim)
// rank the pods for eviction
rank, ok := resourceToRankFunc[resourceToReclaim]
rank, ok := m.resourceToRankFunc[resourceToReclaim]
if !ok {
glog.Errorf("eviction manager: no ranking function for resource %s", resourceToReclaim)
return

View File

@ -48,8 +48,8 @@ func (m *mockPodKiller) killPodNow(pod *api.Pod, status api.PodStatus, gracePeri
func TestMemoryPressure(t *testing.T) {
podMaker := func(name string, requests api.ResourceList, limits api.ResourceList, memoryWorkingSet string) (*api.Pod, statsapi.PodStats) {
pod := newPod(name, []api.Container{
newContainer(name, requests, api.ResourceList{}),
})
newContainer(name, requests, limits),
}, nil)
podStats := newPodMemoryStats(pod, resource.MustParse(memoryWorkingSet))
return pod, podStats
}
@ -124,6 +124,7 @@ func TestMemoryPressure(t *testing.T) {
nodeRef: nodeRef,
nodeConditionsLastObservedAt: nodeConditionsObservedAt{},
thresholdsFirstObservedAt: thresholdsObservedAt{},
resourceToRankFunc: buildResourceToRankFunc(false),
}
// create a best effort pod to test admission
@ -271,3 +272,235 @@ func TestMemoryPressure(t *testing.T) {
}
}
}
// parseQuantity parses the specified value (if provided) otherwise returns 0 value
func parseQuantity(value string) resource.Quantity {
if len(value) == 0 {
return resource.MustParse("0")
}
return resource.MustParse(value)
}
func TestDiskPressureNodeFs(t *testing.T) {
podMaker := func(name string, requests api.ResourceList, limits api.ResourceList, rootFsUsed, logsUsed, perLocalVolumeUsed string) (*api.Pod, statsapi.PodStats) {
pod := newPod(name, []api.Container{
newContainer(name, requests, limits),
}, nil)
podStats := newPodDiskStats(pod, parseQuantity(rootFsUsed), parseQuantity(logsUsed), parseQuantity(perLocalVolumeUsed))
return pod, podStats
}
summaryStatsMaker := func(rootFsAvailableBytes, imageFsAvailableBytes string, podStats map[*api.Pod]statsapi.PodStats) *statsapi.Summary {
rootFsVal := resource.MustParse(rootFsAvailableBytes)
rootFsBytes := uint64(rootFsVal.Value())
imageFsVal := resource.MustParse(imageFsAvailableBytes)
imageFsBytes := uint64(imageFsVal.Value())
result := &statsapi.Summary{
Node: statsapi.NodeStats{
Fs: &statsapi.FsStats{
AvailableBytes: &rootFsBytes,
},
Runtime: &statsapi.RuntimeStats{
ImageFs: &statsapi.FsStats{
AvailableBytes: &imageFsBytes,
},
},
},
Pods: []statsapi.PodStats{},
}
for _, podStat := range podStats {
result.Pods = append(result.Pods, podStat)
}
return result
}
podsToMake := []struct {
name string
requests api.ResourceList
limits api.ResourceList
rootFsUsed string
logsFsUsed string
perLocalVolumeUsed string
}{
{name: "best-effort-high", requests: newResourceList("", ""), limits: newResourceList("", ""), rootFsUsed: "500Mi"},
{name: "best-effort-low", requests: newResourceList("", ""), limits: newResourceList("", ""), perLocalVolumeUsed: "300Mi"},
{name: "burstable-high", requests: newResourceList("100m", "100Mi"), limits: newResourceList("200m", "1Gi"), rootFsUsed: "800Mi"},
{name: "burstable-low", requests: newResourceList("100m", "100Mi"), limits: newResourceList("200m", "1Gi"), logsFsUsed: "300Mi"},
{name: "guaranteed-high", requests: newResourceList("100m", "1Gi"), limits: newResourceList("100m", "1Gi"), rootFsUsed: "800Mi"},
{name: "guaranteed-low", requests: newResourceList("100m", "1Gi"), limits: newResourceList("100m", "1Gi"), rootFsUsed: "200Mi"},
}
pods := []*api.Pod{}
podStats := map[*api.Pod]statsapi.PodStats{}
for _, podToMake := range podsToMake {
pod, podStat := podMaker(podToMake.name, podToMake.requests, podToMake.limits, podToMake.rootFsUsed, podToMake.logsFsUsed, podToMake.perLocalVolumeUsed)
pods = append(pods, pod)
podStats[pod] = podStat
}
activePodsFunc := func() []*api.Pod {
return pods
}
fakeClock := util.NewFakeClock(time.Now())
podKiller := &mockPodKiller{}
nodeRef := &api.ObjectReference{Kind: "Node", Name: "test", UID: types.UID("test"), Namespace: ""}
config := Config{
MaxPodGracePeriodSeconds: 5,
PressureTransitionPeriod: time.Minute * 5,
Thresholds: []Threshold{
{
Signal: SignalNodeFsAvailable,
Operator: OpLessThan,
Value: quantityMustParse("1Gi"),
},
{
Signal: SignalNodeFsAvailable,
Operator: OpLessThan,
Value: quantityMustParse("2Gi"),
GracePeriod: time.Minute * 2,
},
},
}
summaryProvider := &fakeSummaryProvider{result: summaryStatsMaker("16Gi", "200Gi", podStats)}
manager := &managerImpl{
clock: fakeClock,
killPodFunc: podKiller.killPodNow,
config: config,
recorder: &record.FakeRecorder{},
summaryProvider: summaryProvider,
nodeRef: nodeRef,
nodeConditionsLastObservedAt: nodeConditionsObservedAt{},
thresholdsFirstObservedAt: thresholdsObservedAt{},
resourceToRankFunc: buildResourceToRankFunc(false),
}
// create a best effort pod to test admission
podToAdmit, _ := podMaker("pod-to-admit", newResourceList("", ""), newResourceList("", ""), "0Gi", "0Gi", "0Gi")
// synchronize
manager.synchronize(activePodsFunc)
// we should not have disk pressure
if manager.IsUnderDiskPressure() {
t.Errorf("Manager should not report disk pressure")
}
// try to admit our pod (should succeed)
if result := manager.Admit(&lifecycle.PodAdmitAttributes{Pod: podToAdmit}); !result.Admit {
t.Errorf("Admit pod: %v, expected: %v, actual: %v", podToAdmit, true, result.Admit)
}
// induce soft threshold
fakeClock.Step(1 * time.Minute)
summaryProvider.result = summaryStatsMaker("1.5Gi", "200Gi", podStats)
manager.synchronize(activePodsFunc)
// we should have disk pressure
if !manager.IsUnderDiskPressure() {
t.Errorf("Manager should report disk pressure since soft threshold was met")
}
// verify no pod was yet killed because there has not yet been enough time passed.
if podKiller.pod != nil {
t.Errorf("Manager should not have killed a pod yet, but killed: %v", podKiller.pod)
}
// step forward in time pass the grace period
fakeClock.Step(3 * time.Minute)
summaryProvider.result = summaryStatsMaker("1.5Gi", "200Gi", podStats)
manager.synchronize(activePodsFunc)
// we should have disk pressure
if !manager.IsUnderDiskPressure() {
t.Errorf("Manager should report disk pressure since soft threshold was met")
}
// verify the right pod was killed with the right grace period.
if podKiller.pod != pods[0] {
t.Errorf("Manager chose to kill pod: %v, but should have chosen %v", podKiller.pod, pods[0])
}
if podKiller.gracePeriodOverride == nil {
t.Errorf("Manager chose to kill pod but should have had a grace period override.")
}
observedGracePeriod := *podKiller.gracePeriodOverride
if observedGracePeriod != manager.config.MaxPodGracePeriodSeconds {
t.Errorf("Manager chose to kill pod with incorrect grace period. Expected: %d, actual: %d", manager.config.MaxPodGracePeriodSeconds, observedGracePeriod)
}
// reset state
podKiller.pod = nil
podKiller.gracePeriodOverride = nil
// remove disk pressure
fakeClock.Step(20 * time.Minute)
summaryProvider.result = summaryStatsMaker("16Gi", "200Gi", podStats)
manager.synchronize(activePodsFunc)
// we should not have disk pressure
if manager.IsUnderDiskPressure() {
t.Errorf("Manager should not report disk pressure")
}
// induce disk pressure!
fakeClock.Step(1 * time.Minute)
summaryProvider.result = summaryStatsMaker("500Mi", "200Gi", podStats)
manager.synchronize(activePodsFunc)
// we should have disk pressure
if !manager.IsUnderDiskPressure() {
t.Errorf("Manager should report disk pressure")
}
// check the right pod was killed
if podKiller.pod != pods[0] {
t.Errorf("Manager chose to kill pod: %v, but should have chosen %v", podKiller.pod, pods[0])
}
observedGracePeriod = *podKiller.gracePeriodOverride
if observedGracePeriod != int64(0) {
t.Errorf("Manager chose to kill pod with incorrect grace period. Expected: %d, actual: %d", 0, observedGracePeriod)
}
// try to admit our pod (should fail)
if result := manager.Admit(&lifecycle.PodAdmitAttributes{Pod: podToAdmit}); result.Admit {
t.Errorf("Admit pod: %v, expected: %v, actual: %v", podToAdmit, false, result.Admit)
}
// reduce disk pressure
fakeClock.Step(1 * time.Minute)
summaryProvider.result = summaryStatsMaker("16Gi", "200Gi", podStats)
podKiller.pod = nil // reset state
manager.synchronize(activePodsFunc)
// we should have disk pressure (because transition period not yet met)
if !manager.IsUnderDiskPressure() {
t.Errorf("Manager should report disk pressure")
}
// no pod should have been killed
if podKiller.pod != nil {
t.Errorf("Manager chose to kill pod: %v when no pod should have been killed", podKiller.pod)
}
// try to admit our pod (should fail)
if result := manager.Admit(&lifecycle.PodAdmitAttributes{Pod: podToAdmit}); result.Admit {
t.Errorf("Admit pod: %v, expected: %v, actual: %v", podToAdmit, false, result.Admit)
}
// move the clock past transition period to ensure that we stop reporting pressure
fakeClock.Step(5 * time.Minute)
summaryProvider.result = summaryStatsMaker("16Gi", "200Gi", podStats)
podKiller.pod = nil // reset state
manager.synchronize(activePodsFunc)
// we should not have disk pressure (because transition period met)
if manager.IsUnderDiskPressure() {
t.Errorf("Manager should not report disk pressure")
}
// no pod should have been killed
if podKiller.pod != nil {
t.Errorf("Manager chose to kill pod: %v when no pod should have been killed", podKiller.pod)
}
// try to admit our pod (should succeed)
if result := manager.Admit(&lifecycle.PodAdmitAttributes{Pod: podToAdmit}); !result.Admit {
t.Errorf("Admit pod: %v, expected: %v, actual: %v", podToAdmit, true, result.Admit)
}
}

View File

@ -41,21 +41,24 @@ const (
message = "The node was low on compute resources."
// disk, in bytes. internal to this module, used to account for local disk usage.
resourceDisk api.ResourceName = "disk"
// imagefs, in bytes. internal to this module, used to account for local image filesystem usage.
resourceImageFs api.ResourceName = "imagefs"
// nodefs, in bytes. internal to this module, used to account for local node root filesystem usage.
resourceNodeFs api.ResourceName = "nodefs"
)
// resourceToRankFunc maps a resource to ranking function for that resource.
var resourceToRankFunc = map[api.ResourceName]rankFunc{
api.ResourceMemory: rankMemoryPressure,
}
// signalToNodeCondition maps a signal to the node condition to report if threshold is met.
var signalToNodeCondition = map[Signal]api.NodeConditionType{
SignalMemoryAvailable: api.NodeMemoryPressure,
SignalMemoryAvailable: api.NodeMemoryPressure,
SignalImageFsAvailable: api.NodeDiskPressure,
SignalNodeFsAvailable: api.NodeDiskPressure,
}
// signalToResource maps a Signal to its associated Resource.
var signalToResource = map[Signal]api.ResourceName{
SignalMemoryAvailable: api.ResourceMemory,
SignalMemoryAvailable: api.ResourceMemory,
SignalImageFsAvailable: resourceImageFs,
SignalNodeFsAvailable: resourceNodeFs,
}
// validSignal returns true if the signal is supported.
@ -160,7 +163,6 @@ func parseThresholdStatement(statement string) (Threshold, error) {
if quantity.Sign() < 0 {
return Threshold{}, fmt.Errorf("eviction threshold %v cannot be negative: %s", signal, &quantity)
}
return Threshold{
Signal: signal,
Operator: operator,
@ -252,14 +254,52 @@ func memoryUsage(memStats *statsapi.MemoryStats) *resource.Quantity {
return resource.NewQuantity(usage, resource.BinarySI)
}
// podUsage aggregates usage of compute resources.
// it supports the following memory and disk.
func podUsage(podStats statsapi.PodStats) (api.ResourceList, error) {
// localVolumeNames returns the set of volumes for the pod that are local
func localVolumeNames(pod *api.Pod) []string {
result := []string{}
for _, volume := range pod.Spec.Volumes {
if volume.HostPath != nil ||
(volume.EmptyDir != nil && volume.EmptyDir.Medium != api.StorageMediumMemory) ||
volume.ConfigMap != nil ||
volume.GitRepo != nil {
result = append(result, volume.Name)
}
}
return result
}
// podDiskUsage aggregates pod disk usage for the specified stats to measure.
func podDiskUsage(podStats statsapi.PodStats, pod *api.Pod, statsToMeasure []fsStats) (api.ResourceList, error) {
disk := resource.Quantity{Format: resource.BinarySI}
for _, container := range podStats.Containers {
if hasFsStats(statsToMeasure, fsStatsRoot) {
disk.Add(*diskUsage(container.Rootfs))
}
if hasFsStats(statsToMeasure, fsStatsLogs) {
disk.Add(*diskUsage(container.Logs))
}
}
if hasFsStats(statsToMeasure, fsStatsLocalVolumeSource) {
volumeNames := localVolumeNames(pod)
for _, volumeName := range volumeNames {
for _, volumeStats := range podStats.VolumeStats {
if volumeStats.Name == volumeName {
disk.Add(*diskUsage(&volumeStats.FsStats))
}
}
}
}
return api.ResourceList{
resourceDisk: disk,
}, nil
}
// podMemoryUsage aggregates pod memory usage.
func podMemoryUsage(podStats statsapi.PodStats) (api.ResourceList, error) {
disk := resource.Quantity{Format: resource.BinarySI}
memory := resource.Quantity{Format: resource.BinarySI}
for _, container := range podStats.Containers {
// disk usage (if known)
// TODO: need to handle volumes
for _, fsStats := range []*statsapi.FsStats{container.Rootfs, container.Logs} {
disk.Add(*diskUsage(fsStats))
}
@ -384,12 +424,12 @@ func memory(stats statsFunc) cmpFunc {
return 1
}
// if we cant get usage for p1 measured, we want p2 first
p1Usage, err := podUsage(p1Stats)
p1Usage, err := podMemoryUsage(p1Stats)
if err != nil {
return -1
}
// if we cant get usage for p2 measured, we want p1 first
p2Usage, err := podUsage(p2Stats)
p2Usage, err := podMemoryUsage(p2Stats)
if err != nil {
return 1
}
@ -411,7 +451,7 @@ func memory(stats statsFunc) cmpFunc {
}
// disk compares pods by largest consumer of disk relative to request.
func disk(stats statsFunc) cmpFunc {
func disk(stats statsFunc, fsStatsToMeasure []fsStats) cmpFunc {
return func(p1, p2 *api.Pod) int {
p1Stats, found := stats(p1)
// if we have no usage stats for p1, we want p2 first
@ -424,20 +464,20 @@ func disk(stats statsFunc) cmpFunc {
return 1
}
// if we cant get usage for p1 measured, we want p2 first
p1Usage, err := podUsage(p1Stats)
p1Usage, err := podDiskUsage(p1Stats, p1, fsStatsToMeasure)
if err != nil {
return -1
}
// if we cant get usage for p2 measured, we want p1 first
p2Usage, err := podUsage(p2Stats)
p2Usage, err := podDiskUsage(p2Stats, p2, fsStatsToMeasure)
if err != nil {
return 1
}
// disk is best effort, so we don't measure relative to a request.
// TODO: add disk as a guaranteed resource
p1Disk := p1Usage[api.ResourceStorage]
p2Disk := p2Usage[api.ResourceStorage]
p1Disk := p1Usage[resourceDisk]
p2Disk := p2Usage[resourceDisk]
// if p2 is using more than p1, we want p2 first
return p2Disk.Cmp(p1Disk)
}
@ -448,9 +488,11 @@ func rankMemoryPressure(pods []*api.Pod, stats statsFunc) {
orderedBy(qosComparator, memory(stats)).Sort(pods)
}
// rankDiskPressure orders the input pods for eviction in response to disk pressure.
func rankDiskPressure(pods []*api.Pod, stats statsFunc) {
orderedBy(qosComparator, disk(stats)).Sort(pods)
// rankDiskPressureFunc returns a rankFunc that measures the specified fs stats.
func rankDiskPressureFunc(fsStatsToMeasure []fsStats) rankFunc {
return func(pods []*api.Pod, stats statsFunc) {
orderedBy(qosComparator, disk(stats, fsStatsToMeasure)).Sort(pods)
}
}
// byEvictionPriority implements sort.Interface for []api.ResourceName.
@ -474,7 +516,18 @@ func makeSignalObservations(summaryProvider stats.SummaryProvider) (signalObserv
statsFunc := cachedStatsFunc(summary.Pods)
// build an evaluation context for current eviction signals
result := signalObservations{}
result[SignalMemoryAvailable] = resource.NewQuantity(int64(*summary.Node.Memory.AvailableBytes), resource.BinarySI)
if memory := summary.Node.Memory; memory != nil && memory.AvailableBytes != nil {
result[SignalMemoryAvailable] = resource.NewQuantity(int64(*memory.AvailableBytes), resource.BinarySI)
}
if nodeFs := summary.Node.Fs; nodeFs != nil && nodeFs.AvailableBytes != nil {
result[SignalNodeFsAvailable] = resource.NewQuantity(int64(*nodeFs.AvailableBytes), resource.BinarySI)
}
if summary.Node.Runtime != nil {
if imageFs := summary.Node.Runtime.ImageFs; imageFs != nil && imageFs.AvailableBytes != nil {
result[SignalImageFsAvailable] = resource.NewQuantity(int64(*imageFs.AvailableBytes), resource.BinarySI)
}
}
return result, statsFunc, nil
}
@ -569,6 +622,16 @@ func nodeConditionsObservedSince(observedAt nodeConditionsObservedAt, period tim
return results
}
// hgasFsStats returns true if the fsStat is in the input list
func hasFsStats(inputs []fsStats, item fsStats) bool {
for _, input := range inputs {
if input == item {
return true
}
}
return false
}
// hasNodeCondition returns true if the node condition is in the input list
func hasNodeCondition(inputs []api.NodeConditionType, item api.NodeConditionType) bool {
for _, input := range inputs {
@ -612,3 +675,21 @@ func isSoftEviction(thresholds []Threshold, starvedResource api.ResourceName) bo
}
return true
}
// buildresourceToRankFunc returns ranking functions associated with resources
func buildResourceToRankFunc(withImageFs bool) map[api.ResourceName]rankFunc {
resourceToRankFunc := map[api.ResourceName]rankFunc{
api.ResourceMemory: rankMemoryPressure,
}
// usage of an imagefs is optional
if withImageFs {
// with an imagefs, nodefs pod rank func for eviction only includes logs and local volumes
resourceToRankFunc[resourceNodeFs] = rankDiskPressureFunc([]fsStats{fsStatsLogs, fsStatsLocalVolumeSource})
// with an imagefs, imagefs pod rank func for eviction only includes rootfs
resourceToRankFunc[resourceImageFs] = rankDiskPressureFunc([]fsStats{fsStatsRoot})
} else {
// without an imagefs, nodefs pod rank func for eviction looks at all fs stats
resourceToRankFunc[resourceNodeFs] = rankDiskPressureFunc([]fsStats{fsStatsRoot, fsStatsLogs, fsStatsLocalVolumeSource})
}
return resourceToRankFunc
}

View File

@ -75,6 +75,41 @@ func TestParseThresholdConfig(t *testing.T) {
},
},
},
"disk flag values": {
evictionHard: "imagefs.available<150Mi,nodefs.available<100Mi",
evictionSoft: "imagefs.available<300Mi,nodefs.available<200Mi",
evictionSoftGracePeriod: "imagefs.available=30s,nodefs.available=30s",
evictionMinReclaim: "imagefs.available=2Gi,nodefs.available=1Gi",
expectErr: false,
expectThresholds: []Threshold{
{
Signal: SignalImageFsAvailable,
Operator: OpLessThan,
Value: quantityMustParse("150Mi"),
MinReclaim: quantityMustParse("2Gi"),
},
{
Signal: SignalNodeFsAvailable,
Operator: OpLessThan,
Value: quantityMustParse("100Mi"),
MinReclaim: quantityMustParse("1Gi"),
},
{
Signal: SignalImageFsAvailable,
Operator: OpLessThan,
Value: quantityMustParse("300Mi"),
GracePeriod: gracePeriod,
MinReclaim: quantityMustParse("2Gi"),
},
{
Signal: SignalNodeFsAvailable,
Operator: OpLessThan,
Value: quantityMustParse("200Mi"),
GracePeriod: gracePeriod,
MinReclaim: quantityMustParse("1Gi"),
},
},
},
"invalid-signal": {
evictionHard: "mem.available<150Mi",
evictionSoft: "",
@ -127,6 +162,7 @@ func TestParseThresholdConfig(t *testing.T) {
evictionHard: "",
evictionSoft: "memory.available<150Mi",
evictionSoftGracePeriod: "memory.available=-30s",
evictionMinReclaim: "",
expectErr: true,
expectThresholds: []Threshold{},
},
@ -199,13 +235,13 @@ func thresholdEqual(a Threshold, b Threshold) bool {
func TestOrderedByQoS(t *testing.T) {
bestEffort := newPod("best-effort", []api.Container{
newContainer("best-effort", newResourceList("", ""), newResourceList("", "")),
})
}, nil)
burstable := newPod("burstable", []api.Container{
newContainer("burstable", newResourceList("100m", "100Mi"), newResourceList("200m", "200Mi")),
})
}, nil)
guaranteed := newPod("guaranteed", []api.Container{
newContainer("guaranteed", newResourceList("200m", "200Mi"), newResourceList("200m", "200Mi")),
})
}, nil)
pods := []*api.Pod{guaranteed, burstable, bestEffort}
orderedBy(qosComparator).Sort(pods)
@ -218,26 +254,158 @@ func TestOrderedByQoS(t *testing.T) {
}
}
// TestOrderedByDisk ensures we order pods by greediest disk consumer
func TestOrderedByDisk(t *testing.T) {
pod1 := newPod("best-effort-high", []api.Container{
newContainer("best-effort-high", newResourceList("", ""), newResourceList("", "")),
}, []api.Volume{
newVolume("local-volume", api.VolumeSource{
EmptyDir: &api.EmptyDirVolumeSource{},
}),
})
pod2 := newPod("best-effort-low", []api.Container{
newContainer("best-effort-low", newResourceList("", ""), newResourceList("", "")),
}, []api.Volume{
newVolume("local-volume", api.VolumeSource{
EmptyDir: &api.EmptyDirVolumeSource{},
}),
})
pod3 := newPod("burstable-high", []api.Container{
newContainer("burstable-high", newResourceList("100m", "100Mi"), newResourceList("200m", "1Gi")),
}, []api.Volume{
newVolume("local-volume", api.VolumeSource{
EmptyDir: &api.EmptyDirVolumeSource{},
}),
})
pod4 := newPod("burstable-low", []api.Container{
newContainer("burstable-low", newResourceList("100m", "100Mi"), newResourceList("200m", "1Gi")),
}, []api.Volume{
newVolume("local-volume", api.VolumeSource{
EmptyDir: &api.EmptyDirVolumeSource{},
}),
})
pod5 := newPod("guaranteed-high", []api.Container{
newContainer("guaranteed-high", newResourceList("100m", "1Gi"), newResourceList("100m", "1Gi")),
}, []api.Volume{
newVolume("local-volume", api.VolumeSource{
EmptyDir: &api.EmptyDirVolumeSource{},
}),
})
pod6 := newPod("guaranteed-low", []api.Container{
newContainer("guaranteed-low", newResourceList("100m", "1Gi"), newResourceList("100m", "1Gi")),
}, []api.Volume{
newVolume("local-volume", api.VolumeSource{
EmptyDir: &api.EmptyDirVolumeSource{},
}),
})
stats := map[*api.Pod]statsapi.PodStats{
pod1: newPodDiskStats(pod1, resource.MustParse("50Mi"), resource.MustParse("100Mi"), resource.MustParse("50Mi")), // 200Mi
pod2: newPodDiskStats(pod2, resource.MustParse("100Mi"), resource.MustParse("150Mi"), resource.MustParse("50Mi")), // 300Mi
pod3: newPodDiskStats(pod3, resource.MustParse("200Mi"), resource.MustParse("150Mi"), resource.MustParse("50Mi")), // 400Mi
pod4: newPodDiskStats(pod4, resource.MustParse("300Mi"), resource.MustParse("100Mi"), resource.MustParse("50Mi")), // 450Mi
pod5: newPodDiskStats(pod5, resource.MustParse("400Mi"), resource.MustParse("100Mi"), resource.MustParse("50Mi")), // 550Mi
pod6: newPodDiskStats(pod6, resource.MustParse("500Mi"), resource.MustParse("100Mi"), resource.MustParse("50Mi")), // 650Mi
}
statsFn := func(pod *api.Pod) (statsapi.PodStats, bool) {
result, found := stats[pod]
return result, found
}
pods := []*api.Pod{pod1, pod2, pod3, pod4, pod5, pod6}
orderedBy(disk(statsFn, []fsStats{fsStatsRoot, fsStatsLogs, fsStatsLocalVolumeSource})).Sort(pods)
expected := []*api.Pod{pod6, pod5, pod4, pod3, pod2, pod1}
for i := range expected {
if pods[i] != expected[i] {
t.Errorf("Expected pod[%d]: %s, but got: %s", i, expected[i].Name, pods[i].Name)
}
}
}
// TestOrderedByQoSDisk ensures we order pods by qos and then greediest disk consumer
func TestOrderedByQoSDisk(t *testing.T) {
pod1 := newPod("best-effort-high", []api.Container{
newContainer("best-effort-high", newResourceList("", ""), newResourceList("", "")),
}, []api.Volume{
newVolume("local-volume", api.VolumeSource{
EmptyDir: &api.EmptyDirVolumeSource{},
}),
})
pod2 := newPod("best-effort-low", []api.Container{
newContainer("best-effort-low", newResourceList("", ""), newResourceList("", "")),
}, []api.Volume{
newVolume("local-volume", api.VolumeSource{
EmptyDir: &api.EmptyDirVolumeSource{},
}),
})
pod3 := newPod("burstable-high", []api.Container{
newContainer("burstable-high", newResourceList("100m", "100Mi"), newResourceList("200m", "1Gi")),
}, []api.Volume{
newVolume("local-volume", api.VolumeSource{
EmptyDir: &api.EmptyDirVolumeSource{},
}),
})
pod4 := newPod("burstable-low", []api.Container{
newContainer("burstable-low", newResourceList("100m", "100Mi"), newResourceList("200m", "1Gi")),
}, []api.Volume{
newVolume("local-volume", api.VolumeSource{
EmptyDir: &api.EmptyDirVolumeSource{},
}),
})
pod5 := newPod("guaranteed-high", []api.Container{
newContainer("guaranteed-high", newResourceList("100m", "1Gi"), newResourceList("100m", "1Gi")),
}, []api.Volume{
newVolume("local-volume", api.VolumeSource{
EmptyDir: &api.EmptyDirVolumeSource{},
}),
})
pod6 := newPod("guaranteed-low", []api.Container{
newContainer("guaranteed-low", newResourceList("100m", "1Gi"), newResourceList("100m", "1Gi")),
}, []api.Volume{
newVolume("local-volume", api.VolumeSource{
EmptyDir: &api.EmptyDirVolumeSource{},
}),
})
stats := map[*api.Pod]statsapi.PodStats{
pod1: newPodDiskStats(pod1, resource.MustParse("50Mi"), resource.MustParse("100Mi"), resource.MustParse("50Mi")), // 200Mi
pod2: newPodDiskStats(pod2, resource.MustParse("100Mi"), resource.MustParse("150Mi"), resource.MustParse("50Mi")), // 300Mi
pod3: newPodDiskStats(pod3, resource.MustParse("200Mi"), resource.MustParse("150Mi"), resource.MustParse("50Mi")), // 400Mi
pod4: newPodDiskStats(pod4, resource.MustParse("300Mi"), resource.MustParse("100Mi"), resource.MustParse("50Mi")), // 450Mi
pod5: newPodDiskStats(pod5, resource.MustParse("400Mi"), resource.MustParse("100Mi"), resource.MustParse("50Mi")), // 550Mi
pod6: newPodDiskStats(pod6, resource.MustParse("500Mi"), resource.MustParse("100Mi"), resource.MustParse("50Mi")), // 650Mi
}
statsFn := func(pod *api.Pod) (statsapi.PodStats, bool) {
result, found := stats[pod]
return result, found
}
pods := []*api.Pod{pod1, pod2, pod3, pod4, pod5, pod6}
orderedBy(qosComparator, disk(statsFn, []fsStats{fsStatsRoot, fsStatsLogs, fsStatsLocalVolumeSource})).Sort(pods)
expected := []*api.Pod{pod2, pod1, pod4, pod3, pod6, pod5}
for i := range expected {
if pods[i] != expected[i] {
t.Errorf("Expected pod[%d]: %s, but got: %s", i, expected[i].Name, pods[i].Name)
}
}
}
// TestOrderedByMemory ensures we order pods by greediest memory consumer relative to request.
func TestOrderedByMemory(t *testing.T) {
pod1 := newPod("best-effort-high", []api.Container{
newContainer("best-effort-high", newResourceList("", ""), newResourceList("", "")),
})
}, nil)
pod2 := newPod("best-effort-low", []api.Container{
newContainer("best-effort-low", newResourceList("", ""), newResourceList("", "")),
})
}, nil)
pod3 := newPod("burstable-high", []api.Container{
newContainer("burstable-high", newResourceList("100m", "100Mi"), newResourceList("200m", "1Gi")),
})
}, nil)
pod4 := newPod("burstable-low", []api.Container{
newContainer("burstable-low", newResourceList("100m", "100Mi"), newResourceList("200m", "1Gi")),
})
}, nil)
pod5 := newPod("guaranteed-high", []api.Container{
newContainer("guaranteed-high", newResourceList("100m", "1Gi"), newResourceList("100m", "1Gi")),
})
}, nil)
pod6 := newPod("guaranteed-low", []api.Container{
newContainer("guaranteed-low", newResourceList("100m", "1Gi"), newResourceList("100m", "1Gi")),
})
}, nil)
stats := map[*api.Pod]statsapi.PodStats{
pod1: newPodMemoryStats(pod1, resource.MustParse("500Mi")), // 500 relative to request
pod2: newPodMemoryStats(pod2, resource.MustParse("300Mi")), // 300 relative to request
@ -264,22 +432,22 @@ func TestOrderedByMemory(t *testing.T) {
func TestOrderedByQoSMemory(t *testing.T) {
pod1 := newPod("best-effort-high", []api.Container{
newContainer("best-effort-high", newResourceList("", ""), newResourceList("", "")),
})
}, nil)
pod2 := newPod("best-effort-low", []api.Container{
newContainer("best-effort-low", newResourceList("", ""), newResourceList("", "")),
})
}, nil)
pod3 := newPod("burstable-high", []api.Container{
newContainer("burstable-high", newResourceList("100m", "100Mi"), newResourceList("200m", "1Gi")),
})
}, nil)
pod4 := newPod("burstable-low", []api.Container{
newContainer("burstable-low", newResourceList("100m", "100Mi"), newResourceList("200m", "1Gi")),
})
}, nil)
pod5 := newPod("guaranteed-high", []api.Container{
newContainer("guaranteed-high", newResourceList("100m", "1Gi"), newResourceList("100m", "1Gi")),
})
}, nil)
pod6 := newPod("guaranteed-low", []api.Container{
newContainer("guaranteed-low", newResourceList("100m", "1Gi"), newResourceList("100m", "1Gi")),
})
}, nil)
stats := map[*api.Pod]statsapi.PodStats{
pod1: newPodMemoryStats(pod1, resource.MustParse("500Mi")), // 500 relative to request
pod2: newPodMemoryStats(pod2, resource.MustParse("50Mi")), // 50 relative to request
@ -346,11 +514,21 @@ func TestMakeSignalObservations(t *testing.T) {
return pod
}
nodeAvailableBytes := uint64(1024 * 1024 * 1024)
imageFsAvailableBytes := uint64(1024 * 1024)
nodeFsAvailableBytes := uint64(1024)
fakeStats := &statsapi.Summary{
Node: statsapi.NodeStats{
Memory: &statsapi.MemoryStats{
AvailableBytes: &nodeAvailableBytes,
},
Runtime: &statsapi.RuntimeStats{
ImageFs: &statsapi.FsStats{
AvailableBytes: &imageFsAvailableBytes,
},
},
Fs: &statsapi.FsStats{
AvailableBytes: &nodeFsAvailableBytes,
},
},
Pods: []statsapi.PodStats{},
}
@ -370,12 +548,26 @@ func TestMakeSignalObservations(t *testing.T) {
if err != nil {
t.Errorf("Unexpected err: %v", err)
}
quantity, found := actualObservations[SignalMemoryAvailable]
memQuantity, found := actualObservations[SignalMemoryAvailable]
if !found {
t.Errorf("Expected available memory observation: %v", err)
}
if expectedBytes := int64(nodeAvailableBytes); quantity.Value() != expectedBytes {
t.Errorf("Expected %v, actual: %v", expectedBytes, quantity.Value())
if expectedBytes := int64(nodeAvailableBytes); memQuantity.Value() != expectedBytes {
t.Errorf("Expected %v, actual: %v", expectedBytes, memQuantity.Value())
}
nodeFsQuantity, found := actualObservations[SignalNodeFsAvailable]
if !found {
t.Errorf("Expected available nodefs observation: %v", err)
}
if expectedBytes := int64(nodeFsAvailableBytes); nodeFsQuantity.Value() != expectedBytes {
t.Errorf("Expected %v, actual: %v", expectedBytes, nodeFsQuantity.Value())
}
imageFsQuantity, found := actualObservations[SignalImageFsAvailable]
if !found {
t.Errorf("Expected available imagefs observation: %v", err)
}
if expectedBytes := int64(imageFsAvailableBytes); imageFsQuantity.Value() != expectedBytes {
t.Errorf("Expected %v, actual: %v", expectedBytes, imageFsQuantity.Value())
}
for _, pod := range pods {
podStats, found := statsFunc(pod)
@ -670,6 +862,18 @@ func TestReclaimResources(t *testing.T) {
},
result: []api.ResourceName{api.ResourceMemory},
},
"imagefs.available": {
inputs: []Threshold{
{Signal: SignalImageFsAvailable},
},
result: []api.ResourceName{resourceImageFs},
},
"nodefs.available": {
inputs: []Threshold{
{Signal: SignalNodeFsAvailable},
},
result: []api.ResourceName{resourceNodeFs},
},
}
for testName, testCase := range testCases {
actual := reclaimResources(testCase.inputs)
@ -681,6 +885,40 @@ func TestReclaimResources(t *testing.T) {
}
}
// newPodDiskStats returns stats with specified usage amounts.
func newPodDiskStats(pod *api.Pod, rootFsUsed, logsUsed, perLocalVolumeUsed resource.Quantity) statsapi.PodStats {
result := statsapi.PodStats{
PodRef: statsapi.PodReference{
Name: pod.Name, Namespace: pod.Namespace, UID: string(pod.UID),
},
}
rootFsUsedBytes := uint64(rootFsUsed.Value())
logsUsedBytes := uint64(logsUsed.Value())
for range pod.Spec.Containers {
result.Containers = append(result.Containers, statsapi.ContainerStats{
Rootfs: &statsapi.FsStats{
UsedBytes: &rootFsUsedBytes,
},
Logs: &statsapi.FsStats{
UsedBytes: &logsUsedBytes,
},
})
}
perLocalVolumeUsedBytes := uint64(perLocalVolumeUsed.Value())
for _, volumeName := range localVolumeNames(pod) {
result.VolumeStats = append(result.VolumeStats, statsapi.VolumeStats{
Name: volumeName,
FsStats: statsapi.FsStats{
UsedBytes: &perLocalVolumeUsedBytes,
},
})
}
return result
}
func newPodMemoryStats(pod *api.Pod, workingSet resource.Quantity) statsapi.PodStats {
result := statsapi.PodStats{
PodRef: statsapi.PodReference{
@ -723,13 +961,21 @@ func newContainer(name string, requests api.ResourceList, limits api.ResourceLis
}
}
func newPod(name string, containers []api.Container) *api.Pod {
func newVolume(name string, volumeSource api.VolumeSource) api.Volume {
return api.Volume{
Name: name,
VolumeSource: volumeSource,
}
}
func newPod(name string, containers []api.Container, volumes []api.Volume) *api.Pod {
return &api.Pod{
ObjectMeta: api.ObjectMeta{
Name: name,
},
Spec: api.PodSpec{
Containers: containers,
Volumes: volumes,
},
}
}

View File

@ -30,6 +30,22 @@ type Signal string
const (
// SignalMemoryAvailable is memory available (i.e. capacity - workingSet), in bytes.
SignalMemoryAvailable Signal = "memory.available"
// SignalNodeFsAvailable is amount of storage available on filesystem that kubelet uses for volumes, daemon logs, etc.
SignalNodeFsAvailable Signal = "nodefs.available"
// SignalImageFsAvailable is amount of storage available on filesystem that container runtime uses for for storing images and container writable layers.
SignalImageFsAvailable Signal = "imagefs.available"
)
// fsStats defines the types of filesystem stats to collect.
type fsStats string
const (
// fsStatsLocalVolumeSource identifies stats for pod local volume sources.
fsStatsLocalVolumeSource fsStats = "localVolumeSource"
// fsStatsLogs identifies stats for pod logs.
fsStatsLogs fsStats = "logs"
// fsStatsRoot identifies stats for pod container writable layers.
fsStatsRoot fsStats = "root"
)
// ThresholdOperator is the operator used to express a Threshold.
@ -71,6 +87,9 @@ type Manager interface {
// IsUnderMemoryPressure returns true if the node is under memory pressure.
IsUnderMemoryPressure() bool
// IsUnderDiskPressure returns true if the node is under disk pressure.
IsUnderDiskPressure() bool
}
// DiskInfoProvider is responsible for informing the manager how disk is configured.

View File

@ -587,6 +587,64 @@ func (kl *Kubelet) setNodeMemoryPressureCondition(node *api.Node) {
}
}
// setNodeDiskPressureCondition for the node.
// TODO: this needs to move somewhere centralized...
func (kl *Kubelet) setNodeDiskPressureCondition(node *api.Node) {
currentTime := unversioned.NewTime(kl.clock.Now())
var condition *api.NodeCondition
// Check if NodeDiskPressure condition already exists and if it does, just pick it up for update.
for i := range node.Status.Conditions {
if node.Status.Conditions[i].Type == api.NodeDiskPressure {
condition = &node.Status.Conditions[i]
}
}
newCondition := false
// If the NodeDiskPressure condition doesn't exist, create one
if condition == nil {
condition = &api.NodeCondition{
Type: api.NodeDiskPressure,
Status: api.ConditionUnknown,
}
// cannot be appended to node.Status.Conditions here because it gets
// copied to the slice. So if we append to the slice here none of the
// updates we make below are reflected in the slice.
newCondition = true
}
// Update the heartbeat time
condition.LastHeartbeatTime = currentTime
// Note: The conditions below take care of the case when a new NodeDiskressure condition is
// created and as well as the case when the condition already exists. When a new condition
// is created its status is set to api.ConditionUnknown which matches either
// condition.Status != api.ConditionTrue or
// condition.Status != api.ConditionFalse in the conditions below depending on whether
// the kubelet is under disk pressure or not.
if kl.evictionManager.IsUnderDiskPressure() {
if condition.Status != api.ConditionTrue {
condition.Status = api.ConditionTrue
condition.Reason = "KubeletHasDiskPressure"
condition.Message = "kubelet has disk pressure"
condition.LastTransitionTime = currentTime
kl.recordNodeStatusEvent(api.EventTypeNormal, "NodeHasDiskPressure")
}
} else {
if condition.Status != api.ConditionFalse {
condition.Status = api.ConditionFalse
condition.Reason = "KubeletHasNoDiskPressure"
condition.Message = "kubelet has no disk pressure"
condition.LastTransitionTime = currentTime
kl.recordNodeStatusEvent(api.EventTypeNormal, "NodeHasNoDiskPressure")
}
}
if newCondition {
node.Status.Conditions = append(node.Status.Conditions, *condition)
}
}
// Set OODcondition for the node.
func (kl *Kubelet) setNodeOODCondition(node *api.Node) {
currentTime := unversioned.NewTime(kl.clock.Now())
@ -700,6 +758,7 @@ func (kl *Kubelet) defaultNodeStatusFuncs() []func(*api.Node) error {
withoutError(kl.setNodeStatusInfo),
withoutError(kl.setNodeOODCondition),
withoutError(kl.setNodeMemoryPressureCondition),
withoutError(kl.setNodeDiskPressureCondition),
withoutError(kl.setNodeReadyCondition),
withoutError(kl.setNodeVolumesInUseStatus),
withoutError(kl.recordNodeSchedulableEvent),

View File

@ -133,6 +133,14 @@ func TestUpdateNewNodeStatus(t *testing.T) {
LastHeartbeatTime: unversioned.Time{},
LastTransitionTime: unversioned.Time{},
},
{
Type: api.NodeDiskPressure,
Status: api.ConditionFalse,
Reason: "KubeletHasNoDiskPressure",
Message: fmt.Sprintf("kubelet has no disk pressure"),
LastHeartbeatTime: unversioned.Time{},
LastTransitionTime: unversioned.Time{},
},
{
Type: api.NodeReady,
Status: api.ConditionTrue,
@ -316,6 +324,14 @@ func TestUpdateExistingNodeStatus(t *testing.T) {
LastHeartbeatTime: unversioned.Date(2012, 1, 1, 0, 0, 0, 0, time.UTC),
LastTransitionTime: unversioned.Date(2012, 1, 1, 0, 0, 0, 0, time.UTC),
},
{
Type: api.NodeDiskPressure,
Status: api.ConditionFalse,
Reason: "KubeletHasSufficientDisk",
Message: fmt.Sprintf("kubelet has sufficient disk space available"),
LastHeartbeatTime: unversioned.Date(2012, 1, 1, 0, 0, 0, 0, time.UTC),
LastTransitionTime: unversioned.Date(2012, 1, 1, 0, 0, 0, 0, time.UTC),
},
{
Type: api.NodeReady,
Status: api.ConditionTrue,
@ -380,6 +396,14 @@ func TestUpdateExistingNodeStatus(t *testing.T) {
LastHeartbeatTime: unversioned.Time{},
LastTransitionTime: unversioned.Time{},
},
{
Type: api.NodeDiskPressure,
Status: api.ConditionFalse,
Reason: "KubeletHasSufficientDisk",
Message: fmt.Sprintf("kubelet has sufficient disk space available"),
LastHeartbeatTime: unversioned.Time{},
LastTransitionTime: unversioned.Time{},
},
{
Type: api.NodeReady,
Status: api.ConditionTrue,
@ -489,7 +513,6 @@ func TestUpdateExistingNodeOutOfDiskStatusWithTransitionFrequency(t *testing.T)
LastTransitionTime: unversioned.NewTime(clock.Now()),
},
{
Type: api.NodeOutOfDisk,
Status: api.ConditionTrue,
Reason: "KubeletOutOfDisk",
@ -509,8 +532,13 @@ func TestUpdateExistingNodeOutOfDiskStatusWithTransitionFrequency(t *testing.T)
NumCores: 2,
MemoryCapacity: 1024,
}
fsInfo := cadvisorapiv2.FsInfo{
Device: "123",
}
mockCadvisor.On("Start").Return(nil)
mockCadvisor.On("MachineInfo").Return(machineInfo, nil)
mockCadvisor.On("ImagesFsInfo").Return(fsInfo, nil)
mockCadvisor.On("RootFsInfo").Return(fsInfo, nil)
versionInfo := &cadvisorapi.VersionInfo{
KernelVersion: "3.16.0-0.bpo.4-amd64",
ContainerOsVersion: "Debian GNU/Linux 7 (wheezy)",
@ -671,6 +699,14 @@ func TestUpdateNodeStatusWithRuntimeStateError(t *testing.T) {
LastHeartbeatTime: unversioned.Time{},
LastTransitionTime: unversioned.Time{},
},
{
Type: api.NodeDiskPressure,
Status: api.ConditionFalse,
Reason: "KubeletHasNoDiskPressure",
Message: fmt.Sprintf("kubelet has no disk pressure"),
LastHeartbeatTime: unversioned.Time{},
LastTransitionTime: unversioned.Time{},
},
{}, //placeholder
},
NodeInfo: api.NodeSystemInfo{