k3s/examples/spark/README.md

222 lines
9.2 KiB
Markdown
Raw Normal View History

2015-07-14 00:11:22 +00:00
<!-- BEGIN MUNGE: UNVERSIONED_WARNING -->
<!-- BEGIN STRIP_FOR_RELEASE -->
2015-07-16 17:02:26 +00:00
<img src="http://kubernetes.io/img/warning.png" alt="WARNING"
width="25" height="25">
<img src="http://kubernetes.io/img/warning.png" alt="WARNING"
width="25" height="25">
<img src="http://kubernetes.io/img/warning.png" alt="WARNING"
width="25" height="25">
<img src="http://kubernetes.io/img/warning.png" alt="WARNING"
width="25" height="25">
<img src="http://kubernetes.io/img/warning.png" alt="WARNING"
width="25" height="25">
<h2>PLEASE NOTE: This document applies to the HEAD of the source tree</h2>
If you are using a released version of Kubernetes, you should
refer to the docs that go with that version.
<strong>
The latest 1.0.x release of this document can be found
[here](http://releases.k8s.io/release-1.0/examples/spark/README.md).
Documentation for other releases can be found at
[releases.k8s.io](http://releases.k8s.io).
</strong>
--
2015-07-13 22:15:35 +00:00
2015-07-14 00:11:22 +00:00
<!-- END STRIP_FOR_RELEASE -->
<!-- END MUNGE: UNVERSIONED_WARNING -->
# Spark example
Following this example, you will create a functional [Apache
Spark](http://spark.apache.org/) cluster using Kubernetes and
[Docker](http://docker.io).
You will setup a Spark master service and a set of
Spark workers using Spark's [standalone mode](http://spark.apache.org/docs/latest/spark-standalone.html).
For the impatient expert, jump straight to the [tl;dr](#tldr)
section.
### Sources
The Docker images are heavily based on https://github.com/mattf/docker-spark
## Step Zero: Prerequisites
This example assumes you have a Kubernetes cluster installed and
running, and that you have installed the ```kubectl``` command line
tool somewhere in your path. Please see the [getting
2015-07-14 00:11:22 +00:00
started](../../docs/getting-started-guides/) for installation
instructions for your platform.
## Step One: Start your Master service
2015-07-14 16:37:37 +00:00
The Master [service](../../docs/user-guide/services.md) is the master (or head) service for a Spark
cluster.
2015-07-14 16:37:37 +00:00
Use the [`examples/spark/spark-master.json`](spark-master.json) file to create a [pod](../../docs/user-guide/pods.md) running
the Master service.
```shell
$ kubectl create -f examples/spark/spark-master.json
```
2015-07-14 00:11:22 +00:00
Then, use the [`examples/spark/spark-master-service.json`](spark-master-service.json) file to
create a logical service endpoint that Spark workers can use to access
the Master pod.
```shell
$ kubectl create -f examples/spark/spark-master-service.json
```
### Check to see if Master is running and accessible
```shell
$ kubectl get pods
2015-07-08 05:52:52 +00:00
NAME READY STATUS RESTARTS AGE
[...]
spark-master 1/1 Running 0 25s
```
Check logs to see the status of the master.
```shell
$ kubectl logs spark-master
starting org.apache.spark.deploy.master.Master, logging to /opt/spark-1.4.0-bin-hadoop2.6/sbin/../logs/spark--org.apache.spark.deploy.master.Master-1-spark-master.out
Spark Command: /usr/lib/jvm/java-7-openjdk-amd64/jre/bin/java -cp /opt/spark-1.4.0-bin-hadoop2.6/sbin/../conf/:/opt/spark-1.4.0-bin-hadoop2.6/lib/spark-assembly-1.4.0-hadoop2.6.0.jar:/opt/spark-1.4.0-bin-hadoop2.6/lib/datanucleus-api-jdo-3.2.6.jar:/opt/spark-1.4.0-bin-hadoop2.6/lib/datanucleus-rdbms-3.2.9.jar:/opt/spark-1.4.0-bin-hadoop2.6/lib/datanucleus-core-3.2.10.jar -Xms512m -Xmx512m -XX:MaxPermSize=128m org.apache.spark.deploy.master.Master --ip spark-master --port 7077 --webui-port 8080
========================================
15/06/26 14:01:49 INFO Master: Registered signal handlers for [TERM, HUP, INT]
15/06/26 14:01:50 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
15/06/26 14:01:51 INFO SecurityManager: Changing view acls to: root
15/06/26 14:01:51 INFO SecurityManager: Changing modify acls to: root
15/06/26 14:01:51 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(root); users with modify permissions: Set(root)
15/06/26 14:01:51 INFO Slf4jLogger: Slf4jLogger started
15/06/26 14:01:51 INFO Remoting: Starting remoting
15/06/26 14:01:52 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkMaster@spark-master:7077]
15/06/26 14:01:52 INFO Utils: Successfully started service 'sparkMaster' on port 7077.
15/06/26 14:01:52 INFO Utils: Successfully started service on port 6066.
15/06/26 14:01:52 INFO StandaloneRestServer: Started REST server for submitting applications on port 6066
15/06/26 14:01:52 INFO Master: Starting Spark master at spark://spark-master:7077
15/06/26 14:01:52 INFO Master: Running Spark version 1.4.0
15/06/26 14:01:52 INFO Utils: Successfully started service 'MasterUI' on port 8080.
15/06/26 14:01:52 INFO MasterWebUI: Started MasterWebUI at http://10.244.2.34:8080
15/06/26 14:01:53 INFO Master: I have been elected leader! New state: ALIVE
```
## Step Two: Start your Spark workers
The Spark workers do the heavy lifting in a Spark cluster. They
provide execution resources and data cache capabilities for your
program.
The Spark workers need the Master service to be running.
Use the [`examples/spark/spark-worker-controller.json`](spark-worker-controller.json) file to create a
2015-07-14 16:37:37 +00:00
[replication controller](../../docs/user-guide/replication-controller.md) that manages the worker pods.
```shell
$ kubectl create -f examples/spark/spark-worker-controller.json
```
### Check to see if the workers are running
```shell
$ kubectl get pods
2015-07-08 05:52:52 +00:00
NAME READY STATUS RESTARTS AGE
[...]
spark-master 1/1 Running 0 14m
spark-worker-controller-hifwi 1/1 Running 0 33s
spark-worker-controller-u40r2 1/1 Running 0 33s
spark-worker-controller-vpgyg 1/1 Running 0 33s
$ kubectl logs spark-master
[...]
15/06/26 14:15:43 INFO Master: Registering worker 10.244.2.35:46199 with 1 cores, 2.6 GB RAM
15/06/26 14:15:55 INFO Master: Registering worker 10.244.1.15:44839 with 1 cores, 2.6 GB RAM
15/06/26 14:15:55 INFO Master: Registering worker 10.244.0.19:60970 with 1 cores, 2.6 GB RAM
```
2015-07-17 02:01:02 +00:00
## Step Three: Do something with the cluster
Get the address and port of the Master service.
```shell
$ kubectl get service spark-master
NAME LABELS SELECTOR IP(S) PORT(S)
spark-master name=spark-master name=spark-master 10.0.204.187 7077/TCP
```
SSH to one of your cluster nodes. On GCE/GKE you can either use [Developers Console](https://console.developers.google.com)
(more details [here](https://cloud.google.com/compute/docs/ssh-in-browser))
or run `gcloud compute ssh <name>` where the name can be taken from `kubectl get nodes`
(more details [here](https://cloud.google.com/compute/docs/gcloud-compute/#connecting)).
```
$ kubectl get nodes
NAME LABELS STATUS
kubernetes-minion-5jvu kubernetes.io/hostname=kubernetes-minion-5jvu Ready
kubernetes-minion-6fbi kubernetes.io/hostname=kubernetes-minion-6fbi Ready
kubernetes-minion-8y2v kubernetes.io/hostname=kubernetes-minion-8y2v Ready
kubernetes-minion-h0tr kubernetes.io/hostname=kubernetes-minion-h0tr Ready
$ gcloud compute ssh kubernetes-minion-5jvu --zone=us-central1-b
Linux kubernetes-minion-5jvu 3.16.0-0.bpo.4-amd64 #1 SMP Debian 3.16.7-ckt9-3~deb8u1~bpo70+1 (2015-04-27) x86_64
=== GCE Kubernetes node setup complete ===
me@kubernetes-minion-5jvu:~$
```
Once logged in run spark-base image. Inside of the image there is a script
that sets up the environment based on the provided IP and port of the Master.
```
cluster-node $ sudo docker run -it gcr.io/google_containers/spark-base
root@f12a6fec45ce:/# . /setup_client.sh 10.0.204.187 7077
root@f12a6fec45ce:/# pyspark
Python 2.7.9 (default, Mar 1 2015, 12:57:24)
[GCC 4.9.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
15/06/26 14:25:28 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/__ / .__/\_,_/_/ /_/\_\ version 1.4.0
/_/
Using Python version 2.7.9 (default, Mar 1 2015 12:57:24)
SparkContext available as sc, HiveContext available as sqlContext.
>>> import socket
>>> sc.parallelize(range(1000)).map(lambda x:socket.gethostname()).distinct().collect()
['spark-worker-controller-u40r2', 'spark-worker-controller-hifwi', 'spark-worker-controller-vpgyg']
```
2015-07-17 02:01:02 +00:00
## Result
You now have services, replication controllers, and pods for the Spark master and Spark workers.
You can take this example to the next step and start using the Apache Spark cluster
you just created, see [Spark documentation](https://spark.apache.org/documentation.html)
for more information.
## tl;dr
```kubectl create -f spark-master.json```
```kubectl create -f spark-master-service.json```
Make sure the Master Pod is running (use: ```kubectl get pods```).
```kubectl create -f spark-worker-controller.json```
2015-07-14 00:11:22 +00:00
<!-- BEGIN MUNGE: GENERATED_ANALYTICS -->
[![Analytics](https://kubernetes-site.appspot.com/UA-36037335-10/GitHub/examples/spark/README.md?pixel)]()
2015-07-14 00:11:22 +00:00
<!-- END MUNGE: GENERATED_ANALYTICS -->