mirror of https://github.com/k3s-io/k3s
1945 lines
52 KiB
Go
1945 lines
52 KiB
Go
|
// Copyright (c) 2012-2015 Ugorji Nwoke. All rights reserved.
|
||
|
// Use of this source code is governed by a MIT license found in the LICENSE file.
|
||
|
|
||
|
package codec
|
||
|
|
||
|
// Contains code shared by both encode and decode.
|
||
|
|
||
|
// Some shared ideas around encoding/decoding
|
||
|
// ------------------------------------------
|
||
|
//
|
||
|
// If an interface{} is passed, we first do a type assertion to see if it is
|
||
|
// a primitive type or a map/slice of primitive types, and use a fastpath to handle it.
|
||
|
//
|
||
|
// If we start with a reflect.Value, we are already in reflect.Value land and
|
||
|
// will try to grab the function for the underlying Type and directly call that function.
|
||
|
// This is more performant than calling reflect.Value.Interface().
|
||
|
//
|
||
|
// This still helps us bypass many layers of reflection, and give best performance.
|
||
|
//
|
||
|
// Containers
|
||
|
// ------------
|
||
|
// Containers in the stream are either associative arrays (key-value pairs) or
|
||
|
// regular arrays (indexed by incrementing integers).
|
||
|
//
|
||
|
// Some streams support indefinite-length containers, and use a breaking
|
||
|
// byte-sequence to denote that the container has come to an end.
|
||
|
//
|
||
|
// Some streams also are text-based, and use explicit separators to denote the
|
||
|
// end/beginning of different values.
|
||
|
//
|
||
|
// During encode, we use a high-level condition to determine how to iterate through
|
||
|
// the container. That decision is based on whether the container is text-based (with
|
||
|
// separators) or binary (without separators). If binary, we do not even call the
|
||
|
// encoding of separators.
|
||
|
//
|
||
|
// During decode, we use a different high-level condition to determine how to iterate
|
||
|
// through the containers. That decision is based on whether the stream contained
|
||
|
// a length prefix, or if it used explicit breaks. If length-prefixed, we assume that
|
||
|
// it has to be binary, and we do not even try to read separators.
|
||
|
//
|
||
|
// Philosophy
|
||
|
// ------------
|
||
|
// On decode, this codec will update containers appropriately:
|
||
|
// - If struct, update fields from stream into fields of struct.
|
||
|
// If field in stream not found in struct, handle appropriately (based on option).
|
||
|
// If a struct field has no corresponding value in the stream, leave it AS IS.
|
||
|
// If nil in stream, set value to nil/zero value.
|
||
|
// - If map, update map from stream.
|
||
|
// If the stream value is NIL, set the map to nil.
|
||
|
// - if slice, try to update up to length of array in stream.
|
||
|
// if container len is less than stream array length,
|
||
|
// and container cannot be expanded, handled (based on option).
|
||
|
// This means you can decode 4-element stream array into 1-element array.
|
||
|
//
|
||
|
// ------------------------------------
|
||
|
// On encode, user can specify omitEmpty. This means that the value will be omitted
|
||
|
// if the zero value. The problem may occur during decode, where omitted values do not affect
|
||
|
// the value being decoded into. This means that if decoding into a struct with an
|
||
|
// int field with current value=5, and the field is omitted in the stream, then after
|
||
|
// decoding, the value will still be 5 (not 0).
|
||
|
// omitEmpty only works if you guarantee that you always decode into zero-values.
|
||
|
//
|
||
|
// ------------------------------------
|
||
|
// We could have truncated a map to remove keys not available in the stream,
|
||
|
// or set values in the struct which are not in the stream to their zero values.
|
||
|
// We decided against it because there is no efficient way to do it.
|
||
|
// We may introduce it as an option later.
|
||
|
// However, that will require enabling it for both runtime and code generation modes.
|
||
|
//
|
||
|
// To support truncate, we need to do 2 passes over the container:
|
||
|
// map
|
||
|
// - first collect all keys (e.g. in k1)
|
||
|
// - for each key in stream, mark k1 that the key should not be removed
|
||
|
// - after updating map, do second pass and call delete for all keys in k1 which are not marked
|
||
|
// struct:
|
||
|
// - for each field, track the *typeInfo s1
|
||
|
// - iterate through all s1, and for each one not marked, set value to zero
|
||
|
// - this involves checking the possible anonymous fields which are nil ptrs.
|
||
|
// too much work.
|
||
|
//
|
||
|
// ------------------------------------------
|
||
|
// Error Handling is done within the library using panic.
|
||
|
//
|
||
|
// This way, the code doesn't have to keep checking if an error has happened,
|
||
|
// and we don't have to keep sending the error value along with each call
|
||
|
// or storing it in the En|Decoder and checking it constantly along the way.
|
||
|
//
|
||
|
// The disadvantage is that small functions which use panics cannot be inlined.
|
||
|
// The code accounts for that by only using panics behind an interface;
|
||
|
// since interface calls cannot be inlined, this is irrelevant.
|
||
|
//
|
||
|
// We considered storing the error is En|Decoder.
|
||
|
// - once it has its err field set, it cannot be used again.
|
||
|
// - panicing will be optional, controlled by const flag.
|
||
|
// - code should always check error first and return early.
|
||
|
// We eventually decided against it as it makes the code clumsier to always
|
||
|
// check for these error conditions.
|
||
|
|
||
|
import (
|
||
|
"bytes"
|
||
|
"encoding"
|
||
|
"encoding/binary"
|
||
|
"errors"
|
||
|
"fmt"
|
||
|
"math"
|
||
|
"os"
|
||
|
"reflect"
|
||
|
"sort"
|
||
|
"strconv"
|
||
|
"strings"
|
||
|
"sync"
|
||
|
"time"
|
||
|
)
|
||
|
|
||
|
const (
|
||
|
scratchByteArrayLen = 32
|
||
|
// initCollectionCap = 16 // 32 is defensive. 16 is preferred.
|
||
|
|
||
|
// Support encoding.(Binary|Text)(Unm|M)arshaler.
|
||
|
// This constant flag will enable or disable it.
|
||
|
supportMarshalInterfaces = true
|
||
|
|
||
|
// for debugging, set this to false, to catch panic traces.
|
||
|
// Note that this will always cause rpc tests to fail, since they need io.EOF sent via panic.
|
||
|
recoverPanicToErr = true
|
||
|
|
||
|
// arrayCacheLen is the length of the cache used in encoder or decoder for
|
||
|
// allowing zero-alloc initialization.
|
||
|
arrayCacheLen = 8
|
||
|
|
||
|
// We tried an optimization, where we detect if a type is one of the known types
|
||
|
// we optimized for (e.g. int, []uint64, etc).
|
||
|
//
|
||
|
// However, we notice some worse performance when using this optimization.
|
||
|
// So we hide it behind a flag, to turn on if needed.
|
||
|
useLookupRecognizedTypes = false
|
||
|
|
||
|
// using recognized allows us to do d.decode(interface{}) instead of d.decodeValue(reflect.Value)
|
||
|
// when we can infer that the kind of the interface{} is one of the ones hard-coded in the
|
||
|
// type switch for known types or the ones defined by fast-path.
|
||
|
//
|
||
|
// However, it seems we get better performance when we don't recognize, and just let
|
||
|
// reflection handle it.
|
||
|
//
|
||
|
// Reasoning is as below:
|
||
|
// typeswitch is a binary search with a branch to a code-point.
|
||
|
// getdecfn is a binary search with a call to a function pointer.
|
||
|
//
|
||
|
// both are about the same.
|
||
|
//
|
||
|
// so: why prefer typeswitch?
|
||
|
//
|
||
|
// is recognized does the following:
|
||
|
// - lookup rtid
|
||
|
// - check if in sorted list
|
||
|
// - calls decode(type switch)
|
||
|
// - 1 or 2 binary search to a point in code
|
||
|
// - branch there
|
||
|
//
|
||
|
// vs getdecfn
|
||
|
// - lookup rtid
|
||
|
// - check in sorted list for a function pointer
|
||
|
// - calls it to decode using reflection (optimized)
|
||
|
|
||
|
// always set xDebug = false before releasing software
|
||
|
xDebug = true
|
||
|
)
|
||
|
|
||
|
var (
|
||
|
oneByteArr = [1]byte{0}
|
||
|
zeroByteSlice = oneByteArr[:0:0]
|
||
|
)
|
||
|
|
||
|
var pool pooler
|
||
|
|
||
|
func init() {
|
||
|
pool.init()
|
||
|
}
|
||
|
|
||
|
// type findCodecFnMode uint8
|
||
|
|
||
|
// const (
|
||
|
// findCodecFnModeMap findCodecFnMode = iota
|
||
|
// findCodecFnModeBinarySearch
|
||
|
// findCodecFnModeLinearSearch
|
||
|
// )
|
||
|
|
||
|
type charEncoding uint8
|
||
|
|
||
|
const (
|
||
|
c_RAW charEncoding = iota
|
||
|
c_UTF8
|
||
|
c_UTF16LE
|
||
|
c_UTF16BE
|
||
|
c_UTF32LE
|
||
|
c_UTF32BE
|
||
|
)
|
||
|
|
||
|
// valueType is the stream type
|
||
|
type valueType uint8
|
||
|
|
||
|
const (
|
||
|
valueTypeUnset valueType = iota
|
||
|
valueTypeNil
|
||
|
valueTypeInt
|
||
|
valueTypeUint
|
||
|
valueTypeFloat
|
||
|
valueTypeBool
|
||
|
valueTypeString
|
||
|
valueTypeSymbol
|
||
|
valueTypeBytes
|
||
|
valueTypeMap
|
||
|
valueTypeArray
|
||
|
valueTypeTimestamp
|
||
|
valueTypeExt
|
||
|
|
||
|
// valueTypeInvalid = 0xff
|
||
|
)
|
||
|
|
||
|
func (x valueType) String() string {
|
||
|
switch x {
|
||
|
case valueTypeNil:
|
||
|
return "Nil"
|
||
|
case valueTypeInt:
|
||
|
return "Int"
|
||
|
case valueTypeUint:
|
||
|
return "Uint"
|
||
|
case valueTypeFloat:
|
||
|
return "Float"
|
||
|
case valueTypeBool:
|
||
|
return "Bool"
|
||
|
case valueTypeString:
|
||
|
return "String"
|
||
|
case valueTypeSymbol:
|
||
|
return "Symbol"
|
||
|
case valueTypeBytes:
|
||
|
return "Bytes"
|
||
|
case valueTypeMap:
|
||
|
return "Map"
|
||
|
case valueTypeArray:
|
||
|
return "Array"
|
||
|
case valueTypeTimestamp:
|
||
|
return "Timestamp"
|
||
|
case valueTypeExt:
|
||
|
return "Ext"
|
||
|
}
|
||
|
return strconv.FormatInt(int64(x), 10)
|
||
|
}
|
||
|
|
||
|
type seqType uint8
|
||
|
|
||
|
const (
|
||
|
_ seqType = iota
|
||
|
seqTypeArray
|
||
|
seqTypeSlice
|
||
|
seqTypeChan
|
||
|
)
|
||
|
|
||
|
// note that containerMapStart and containerArraySend are not sent.
|
||
|
// This is because the ReadXXXStart and EncodeXXXStart already does these.
|
||
|
type containerState uint8
|
||
|
|
||
|
const (
|
||
|
_ containerState = iota
|
||
|
|
||
|
containerMapStart // slot left open, since Driver method already covers it
|
||
|
containerMapKey
|
||
|
containerMapValue
|
||
|
containerMapEnd
|
||
|
containerArrayStart // slot left open, since Driver methods already cover it
|
||
|
containerArrayElem
|
||
|
containerArrayEnd
|
||
|
)
|
||
|
|
||
|
// sfiIdx used for tracking where a (field/enc)Name is seen in a []*structFieldInfo
|
||
|
type sfiIdx struct {
|
||
|
name string
|
||
|
index int
|
||
|
}
|
||
|
|
||
|
// do not recurse if a containing type refers to an embedded type
|
||
|
// which refers back to its containing type (via a pointer).
|
||
|
// The second time this back-reference happens, break out,
|
||
|
// so as not to cause an infinite loop.
|
||
|
const rgetMaxRecursion = 2
|
||
|
|
||
|
// Anecdotally, we believe most types have <= 12 fields.
|
||
|
// Java's PMD rules set TooManyFields threshold to 15.
|
||
|
const typeInfoLoadArrayLen = 12
|
||
|
|
||
|
type typeInfoLoad struct {
|
||
|
fNames []string
|
||
|
encNames []string
|
||
|
etypes []uintptr
|
||
|
sfis []*structFieldInfo
|
||
|
}
|
||
|
|
||
|
type typeInfoLoadArray struct {
|
||
|
fNames [typeInfoLoadArrayLen]string
|
||
|
encNames [typeInfoLoadArrayLen]string
|
||
|
etypes [typeInfoLoadArrayLen]uintptr
|
||
|
sfis [typeInfoLoadArrayLen]*structFieldInfo
|
||
|
sfiidx [typeInfoLoadArrayLen]sfiIdx
|
||
|
}
|
||
|
|
||
|
// type containerStateRecv interface {
|
||
|
// sendContainerState(containerState)
|
||
|
// }
|
||
|
|
||
|
// mirror json.Marshaler and json.Unmarshaler here,
|
||
|
// so we don't import the encoding/json package
|
||
|
type jsonMarshaler interface {
|
||
|
MarshalJSON() ([]byte, error)
|
||
|
}
|
||
|
type jsonUnmarshaler interface {
|
||
|
UnmarshalJSON([]byte) error
|
||
|
}
|
||
|
|
||
|
// type byteAccepter func(byte) bool
|
||
|
|
||
|
var (
|
||
|
bigen = binary.BigEndian
|
||
|
structInfoFieldName = "_struct"
|
||
|
|
||
|
mapStrIntfTyp = reflect.TypeOf(map[string]interface{}(nil))
|
||
|
mapIntfIntfTyp = reflect.TypeOf(map[interface{}]interface{}(nil))
|
||
|
intfSliceTyp = reflect.TypeOf([]interface{}(nil))
|
||
|
intfTyp = intfSliceTyp.Elem()
|
||
|
|
||
|
stringTyp = reflect.TypeOf("")
|
||
|
timeTyp = reflect.TypeOf(time.Time{})
|
||
|
rawExtTyp = reflect.TypeOf(RawExt{})
|
||
|
rawTyp = reflect.TypeOf(Raw{})
|
||
|
uint8SliceTyp = reflect.TypeOf([]uint8(nil))
|
||
|
|
||
|
mapBySliceTyp = reflect.TypeOf((*MapBySlice)(nil)).Elem()
|
||
|
|
||
|
binaryMarshalerTyp = reflect.TypeOf((*encoding.BinaryMarshaler)(nil)).Elem()
|
||
|
binaryUnmarshalerTyp = reflect.TypeOf((*encoding.BinaryUnmarshaler)(nil)).Elem()
|
||
|
|
||
|
textMarshalerTyp = reflect.TypeOf((*encoding.TextMarshaler)(nil)).Elem()
|
||
|
textUnmarshalerTyp = reflect.TypeOf((*encoding.TextUnmarshaler)(nil)).Elem()
|
||
|
|
||
|
jsonMarshalerTyp = reflect.TypeOf((*jsonMarshaler)(nil)).Elem()
|
||
|
jsonUnmarshalerTyp = reflect.TypeOf((*jsonUnmarshaler)(nil)).Elem()
|
||
|
|
||
|
selferTyp = reflect.TypeOf((*Selfer)(nil)).Elem()
|
||
|
|
||
|
uint8SliceTypId = rt2id(uint8SliceTyp)
|
||
|
rawExtTypId = rt2id(rawExtTyp)
|
||
|
rawTypId = rt2id(rawTyp)
|
||
|
intfTypId = rt2id(intfTyp)
|
||
|
timeTypId = rt2id(timeTyp)
|
||
|
stringTypId = rt2id(stringTyp)
|
||
|
|
||
|
mapStrIntfTypId = rt2id(mapStrIntfTyp)
|
||
|
mapIntfIntfTypId = rt2id(mapIntfIntfTyp)
|
||
|
intfSliceTypId = rt2id(intfSliceTyp)
|
||
|
// mapBySliceTypId = rt2id(mapBySliceTyp)
|
||
|
|
||
|
intBitsize uint8 = uint8(reflect.TypeOf(int(0)).Bits())
|
||
|
uintBitsize uint8 = uint8(reflect.TypeOf(uint(0)).Bits())
|
||
|
|
||
|
bsAll0x00 = []byte{0, 0, 0, 0, 0, 0, 0, 0}
|
||
|
bsAll0xff = []byte{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}
|
||
|
|
||
|
chkOvf checkOverflow
|
||
|
|
||
|
noFieldNameToStructFieldInfoErr = errors.New("no field name passed to parseStructFieldInfo")
|
||
|
)
|
||
|
|
||
|
var defTypeInfos = NewTypeInfos([]string{"codec", "json"})
|
||
|
|
||
|
var immutableKindsSet = [32]bool{
|
||
|
// reflect.Invalid: ,
|
||
|
reflect.Bool: true,
|
||
|
reflect.Int: true,
|
||
|
reflect.Int8: true,
|
||
|
reflect.Int16: true,
|
||
|
reflect.Int32: true,
|
||
|
reflect.Int64: true,
|
||
|
reflect.Uint: true,
|
||
|
reflect.Uint8: true,
|
||
|
reflect.Uint16: true,
|
||
|
reflect.Uint32: true,
|
||
|
reflect.Uint64: true,
|
||
|
reflect.Uintptr: true,
|
||
|
reflect.Float32: true,
|
||
|
reflect.Float64: true,
|
||
|
reflect.Complex64: true,
|
||
|
reflect.Complex128: true,
|
||
|
// reflect.Array
|
||
|
// reflect.Chan
|
||
|
// reflect.Func: true,
|
||
|
// reflect.Interface
|
||
|
// reflect.Map
|
||
|
// reflect.Ptr
|
||
|
// reflect.Slice
|
||
|
reflect.String: true,
|
||
|
// reflect.Struct
|
||
|
// reflect.UnsafePointer
|
||
|
}
|
||
|
|
||
|
var recognizedRtids []uintptr
|
||
|
var recognizedRtidPtrs []uintptr
|
||
|
var recognizedRtidOrPtrs []uintptr
|
||
|
|
||
|
func init() {
|
||
|
if !useLookupRecognizedTypes {
|
||
|
return
|
||
|
}
|
||
|
for _, v := range [...]interface{}{
|
||
|
float32(0),
|
||
|
float64(0),
|
||
|
uintptr(0),
|
||
|
uint(0),
|
||
|
uint8(0),
|
||
|
uint16(0),
|
||
|
uint32(0),
|
||
|
uint64(0),
|
||
|
uintptr(0),
|
||
|
int(0),
|
||
|
int8(0),
|
||
|
int16(0),
|
||
|
int32(0),
|
||
|
int64(0),
|
||
|
bool(false),
|
||
|
string(""),
|
||
|
Raw{},
|
||
|
[]byte(nil),
|
||
|
} {
|
||
|
rt := reflect.TypeOf(v)
|
||
|
recognizedRtids = append(recognizedRtids, rt2id(rt))
|
||
|
recognizedRtidPtrs = append(recognizedRtidPtrs, rt2id(reflect.PtrTo(rt)))
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func containsU(s []uintptr, v uintptr) bool {
|
||
|
// return false // TODO: REMOVE
|
||
|
h, i, j := 0, 0, len(s)
|
||
|
for i < j {
|
||
|
h = i + (j-i)/2
|
||
|
if s[h] < v {
|
||
|
i = h + 1
|
||
|
} else {
|
||
|
j = h
|
||
|
}
|
||
|
}
|
||
|
if i < len(s) && s[i] == v {
|
||
|
return true
|
||
|
}
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
func isRecognizedRtid(rtid uintptr) bool {
|
||
|
return containsU(recognizedRtids, rtid)
|
||
|
}
|
||
|
|
||
|
func isRecognizedRtidPtr(rtid uintptr) bool {
|
||
|
return containsU(recognizedRtidPtrs, rtid)
|
||
|
}
|
||
|
|
||
|
func isRecognizedRtidOrPtr(rtid uintptr) bool {
|
||
|
return containsU(recognizedRtidOrPtrs, rtid)
|
||
|
}
|
||
|
|
||
|
// Selfer defines methods by which a value can encode or decode itself.
|
||
|
//
|
||
|
// Any type which implements Selfer will be able to encode or decode itself.
|
||
|
// Consequently, during (en|de)code, this takes precedence over
|
||
|
// (text|binary)(M|Unm)arshal or extension support.
|
||
|
type Selfer interface {
|
||
|
CodecEncodeSelf(*Encoder)
|
||
|
CodecDecodeSelf(*Decoder)
|
||
|
}
|
||
|
|
||
|
// MapBySlice represents a slice which should be encoded as a map in the stream.
|
||
|
// The slice contains a sequence of key-value pairs.
|
||
|
// This affords storing a map in a specific sequence in the stream.
|
||
|
//
|
||
|
// The support of MapBySlice affords the following:
|
||
|
// - A slice type which implements MapBySlice will be encoded as a map
|
||
|
// - A slice can be decoded from a map in the stream
|
||
|
type MapBySlice interface {
|
||
|
MapBySlice()
|
||
|
}
|
||
|
|
||
|
// WARNING: DO NOT USE DIRECTLY. EXPORTED FOR GODOC BENEFIT. WILL BE REMOVED.
|
||
|
//
|
||
|
// BasicHandle encapsulates the common options and extension functions.
|
||
|
type BasicHandle struct {
|
||
|
// TypeInfos is used to get the type info for any type.
|
||
|
//
|
||
|
// If not configured, the default TypeInfos is used, which uses struct tag keys: codec, json
|
||
|
TypeInfos *TypeInfos
|
||
|
|
||
|
extHandle
|
||
|
EncodeOptions
|
||
|
DecodeOptions
|
||
|
noBuiltInTypeChecker
|
||
|
}
|
||
|
|
||
|
func (x *BasicHandle) getBasicHandle() *BasicHandle {
|
||
|
return x
|
||
|
}
|
||
|
|
||
|
func (x *BasicHandle) getTypeInfo(rtid uintptr, rt reflect.Type) (pti *typeInfo) {
|
||
|
if x.TypeInfos == nil {
|
||
|
return defTypeInfos.get(rtid, rt)
|
||
|
}
|
||
|
return x.TypeInfos.get(rtid, rt)
|
||
|
}
|
||
|
|
||
|
// Handle is the interface for a specific encoding format.
|
||
|
//
|
||
|
// Typically, a Handle is pre-configured before first time use,
|
||
|
// and not modified while in use. Such a pre-configured Handle
|
||
|
// is safe for concurrent access.
|
||
|
type Handle interface {
|
||
|
getBasicHandle() *BasicHandle
|
||
|
newEncDriver(w *Encoder) encDriver
|
||
|
newDecDriver(r *Decoder) decDriver
|
||
|
isBinary() bool
|
||
|
hasElemSeparators() bool
|
||
|
IsBuiltinType(rtid uintptr) bool
|
||
|
}
|
||
|
|
||
|
// Raw represents raw formatted bytes.
|
||
|
// We "blindly" store it during encode and store the raw bytes during decode.
|
||
|
// Note: it is dangerous during encode, so we may gate the behaviour behind an Encode flag which must be explicitly set.
|
||
|
type Raw []byte
|
||
|
|
||
|
// RawExt represents raw unprocessed extension data.
|
||
|
// Some codecs will decode extension data as a *RawExt if there is no registered extension for the tag.
|
||
|
//
|
||
|
// Only one of Data or Value is nil. If Data is nil, then the content of the RawExt is in the Value.
|
||
|
type RawExt struct {
|
||
|
Tag uint64
|
||
|
// Data is the []byte which represents the raw ext. If Data is nil, ext is exposed in Value.
|
||
|
// Data is used by codecs (e.g. binc, msgpack, simple) which do custom serialization of the types
|
||
|
Data []byte
|
||
|
// Value represents the extension, if Data is nil.
|
||
|
// Value is used by codecs (e.g. cbor, json) which use the format to do custom serialization of the types.
|
||
|
Value interface{}
|
||
|
}
|
||
|
|
||
|
// BytesExt handles custom (de)serialization of types to/from []byte.
|
||
|
// It is used by codecs (e.g. binc, msgpack, simple) which do custom serialization of the types.
|
||
|
type BytesExt interface {
|
||
|
// WriteExt converts a value to a []byte.
|
||
|
//
|
||
|
// Note: v *may* be a pointer to the extension type, if the extension type was a struct or array.
|
||
|
WriteExt(v interface{}) []byte
|
||
|
|
||
|
// ReadExt updates a value from a []byte.
|
||
|
ReadExt(dst interface{}, src []byte)
|
||
|
}
|
||
|
|
||
|
// InterfaceExt handles custom (de)serialization of types to/from another interface{} value.
|
||
|
// The Encoder or Decoder will then handle the further (de)serialization of that known type.
|
||
|
//
|
||
|
// It is used by codecs (e.g. cbor, json) which use the format to do custom serialization of the types.
|
||
|
type InterfaceExt interface {
|
||
|
// ConvertExt converts a value into a simpler interface for easy encoding e.g. convert time.Time to int64.
|
||
|
//
|
||
|
// Note: v *may* be a pointer to the extension type, if the extension type was a struct or array.
|
||
|
ConvertExt(v interface{}) interface{}
|
||
|
|
||
|
// UpdateExt updates a value from a simpler interface for easy decoding e.g. convert int64 to time.Time.
|
||
|
UpdateExt(dst interface{}, src interface{})
|
||
|
}
|
||
|
|
||
|
// Ext handles custom (de)serialization of custom types / extensions.
|
||
|
type Ext interface {
|
||
|
BytesExt
|
||
|
InterfaceExt
|
||
|
}
|
||
|
|
||
|
// addExtWrapper is a wrapper implementation to support former AddExt exported method.
|
||
|
type addExtWrapper struct {
|
||
|
encFn func(reflect.Value) ([]byte, error)
|
||
|
decFn func(reflect.Value, []byte) error
|
||
|
}
|
||
|
|
||
|
func (x addExtWrapper) WriteExt(v interface{}) []byte {
|
||
|
bs, err := x.encFn(reflect.ValueOf(v))
|
||
|
if err != nil {
|
||
|
panic(err)
|
||
|
}
|
||
|
return bs
|
||
|
}
|
||
|
|
||
|
func (x addExtWrapper) ReadExt(v interface{}, bs []byte) {
|
||
|
if err := x.decFn(reflect.ValueOf(v), bs); err != nil {
|
||
|
panic(err)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (x addExtWrapper) ConvertExt(v interface{}) interface{} {
|
||
|
return x.WriteExt(v)
|
||
|
}
|
||
|
|
||
|
func (x addExtWrapper) UpdateExt(dest interface{}, v interface{}) {
|
||
|
x.ReadExt(dest, v.([]byte))
|
||
|
}
|
||
|
|
||
|
type setExtWrapper struct {
|
||
|
b BytesExt
|
||
|
i InterfaceExt
|
||
|
}
|
||
|
|
||
|
func (x *setExtWrapper) WriteExt(v interface{}) []byte {
|
||
|
if x.b == nil {
|
||
|
panic("BytesExt.WriteExt is not supported")
|
||
|
}
|
||
|
return x.b.WriteExt(v)
|
||
|
}
|
||
|
|
||
|
func (x *setExtWrapper) ReadExt(v interface{}, bs []byte) {
|
||
|
if x.b == nil {
|
||
|
panic("BytesExt.WriteExt is not supported")
|
||
|
|
||
|
}
|
||
|
x.b.ReadExt(v, bs)
|
||
|
}
|
||
|
|
||
|
func (x *setExtWrapper) ConvertExt(v interface{}) interface{} {
|
||
|
if x.i == nil {
|
||
|
panic("InterfaceExt.ConvertExt is not supported")
|
||
|
|
||
|
}
|
||
|
return x.i.ConvertExt(v)
|
||
|
}
|
||
|
|
||
|
func (x *setExtWrapper) UpdateExt(dest interface{}, v interface{}) {
|
||
|
if x.i == nil {
|
||
|
panic("InterfaceExxt.UpdateExt is not supported")
|
||
|
|
||
|
}
|
||
|
x.i.UpdateExt(dest, v)
|
||
|
}
|
||
|
|
||
|
type binaryEncodingType struct{}
|
||
|
|
||
|
func (_ binaryEncodingType) isBinary() bool { return true }
|
||
|
|
||
|
type textEncodingType struct{}
|
||
|
|
||
|
func (_ textEncodingType) isBinary() bool { return false }
|
||
|
|
||
|
// noBuiltInTypes is embedded into many types which do not support builtins
|
||
|
// e.g. msgpack, simple, cbor.
|
||
|
|
||
|
type noBuiltInTypeChecker struct{}
|
||
|
|
||
|
func (_ noBuiltInTypeChecker) IsBuiltinType(rt uintptr) bool { return false }
|
||
|
|
||
|
type noBuiltInTypes struct{ noBuiltInTypeChecker }
|
||
|
|
||
|
func (_ noBuiltInTypes) EncodeBuiltin(rt uintptr, v interface{}) {}
|
||
|
func (_ noBuiltInTypes) DecodeBuiltin(rt uintptr, v interface{}) {}
|
||
|
|
||
|
// type noStreamingCodec struct{}
|
||
|
// func (_ noStreamingCodec) CheckBreak() bool { return false }
|
||
|
// func (_ noStreamingCodec) hasElemSeparators() bool { return false }
|
||
|
|
||
|
type noElemSeparators struct{}
|
||
|
|
||
|
func (_ noElemSeparators) hasElemSeparators() (v bool) { return }
|
||
|
|
||
|
// bigenHelper.
|
||
|
// Users must already slice the x completely, because we will not reslice.
|
||
|
type bigenHelper struct {
|
||
|
x []byte // must be correctly sliced to appropriate len. slicing is a cost.
|
||
|
w encWriter
|
||
|
}
|
||
|
|
||
|
func (z bigenHelper) writeUint16(v uint16) {
|
||
|
bigen.PutUint16(z.x, v)
|
||
|
z.w.writeb(z.x)
|
||
|
}
|
||
|
|
||
|
func (z bigenHelper) writeUint32(v uint32) {
|
||
|
bigen.PutUint32(z.x, v)
|
||
|
z.w.writeb(z.x)
|
||
|
}
|
||
|
|
||
|
func (z bigenHelper) writeUint64(v uint64) {
|
||
|
bigen.PutUint64(z.x, v)
|
||
|
z.w.writeb(z.x)
|
||
|
}
|
||
|
|
||
|
type extTypeTagFn struct {
|
||
|
rtid uintptr
|
||
|
rt reflect.Type
|
||
|
tag uint64
|
||
|
ext Ext
|
||
|
}
|
||
|
|
||
|
type extHandle []extTypeTagFn
|
||
|
|
||
|
// DEPRECATED: Use SetBytesExt or SetInterfaceExt on the Handle instead.
|
||
|
//
|
||
|
// AddExt registes an encode and decode function for a reflect.Type.
|
||
|
// AddExt internally calls SetExt.
|
||
|
// To deregister an Ext, call AddExt with nil encfn and/or nil decfn.
|
||
|
func (o *extHandle) AddExt(
|
||
|
rt reflect.Type, tag byte,
|
||
|
encfn func(reflect.Value) ([]byte, error), decfn func(reflect.Value, []byte) error,
|
||
|
) (err error) {
|
||
|
if encfn == nil || decfn == nil {
|
||
|
return o.SetExt(rt, uint64(tag), nil)
|
||
|
}
|
||
|
return o.SetExt(rt, uint64(tag), addExtWrapper{encfn, decfn})
|
||
|
}
|
||
|
|
||
|
// DEPRECATED: Use SetBytesExt or SetInterfaceExt on the Handle instead.
|
||
|
//
|
||
|
// Note that the type must be a named type, and specifically not
|
||
|
// a pointer or Interface. An error is returned if that is not honored.
|
||
|
//
|
||
|
// To Deregister an ext, call SetExt with nil Ext
|
||
|
func (o *extHandle) SetExt(rt reflect.Type, tag uint64, ext Ext) (err error) {
|
||
|
// o is a pointer, because we may need to initialize it
|
||
|
if rt.PkgPath() == "" || rt.Kind() == reflect.Interface {
|
||
|
err = fmt.Errorf("codec.Handle.AddExt: Takes named type, not a pointer or interface: %T",
|
||
|
reflect.Zero(rt).Interface())
|
||
|
return
|
||
|
}
|
||
|
|
||
|
rtid := rt2id(rt)
|
||
|
for _, v := range *o {
|
||
|
if v.rtid == rtid {
|
||
|
v.tag, v.ext = tag, ext
|
||
|
return
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if *o == nil {
|
||
|
*o = make([]extTypeTagFn, 0, 4)
|
||
|
}
|
||
|
*o = append(*o, extTypeTagFn{rtid, rt, tag, ext})
|
||
|
return
|
||
|
}
|
||
|
|
||
|
func (o extHandle) getExt(rtid uintptr) *extTypeTagFn {
|
||
|
var v *extTypeTagFn
|
||
|
for i := range o {
|
||
|
v = &o[i]
|
||
|
if v.rtid == rtid {
|
||
|
return v
|
||
|
}
|
||
|
}
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
func (o extHandle) getExtForTag(tag uint64) *extTypeTagFn {
|
||
|
var v *extTypeTagFn
|
||
|
for i := range o {
|
||
|
v = &o[i]
|
||
|
if v.tag == tag {
|
||
|
return v
|
||
|
}
|
||
|
}
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
const maxLevelsEmbedding = 16
|
||
|
|
||
|
type structFieldInfo struct {
|
||
|
encName string // encode name
|
||
|
fieldName string // field name
|
||
|
|
||
|
is [maxLevelsEmbedding]uint16 // (recursive/embedded) field index in struct
|
||
|
nis uint8 // num levels of embedding. if 1, then it's not embedded.
|
||
|
omitEmpty bool
|
||
|
toArray bool // if field is _struct, is the toArray set?
|
||
|
}
|
||
|
|
||
|
func (si *structFieldInfo) setToZeroValue(v reflect.Value) {
|
||
|
if v, valid := si.field(v, false); valid {
|
||
|
v.Set(reflect.Zero(v.Type()))
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// rv returns the field of the struct.
|
||
|
// If anonymous, it returns an Invalid
|
||
|
func (si *structFieldInfo) field(v reflect.Value, update bool) (rv2 reflect.Value, valid bool) {
|
||
|
// replicate FieldByIndex
|
||
|
for i, x := range si.is {
|
||
|
if uint8(i) == si.nis {
|
||
|
break
|
||
|
}
|
||
|
if v, valid = baseStructRv(v, update); !valid {
|
||
|
return
|
||
|
}
|
||
|
v = v.Field(int(x))
|
||
|
}
|
||
|
|
||
|
return v, true
|
||
|
}
|
||
|
|
||
|
func (si *structFieldInfo) fieldval(v reflect.Value, update bool) reflect.Value {
|
||
|
v, _ = si.field(v, update)
|
||
|
return v
|
||
|
}
|
||
|
|
||
|
func parseStructFieldInfo(fname string, stag string) *structFieldInfo {
|
||
|
// if fname == "" {
|
||
|
// panic(noFieldNameToStructFieldInfoErr)
|
||
|
// }
|
||
|
si := structFieldInfo{
|
||
|
encName: fname,
|
||
|
}
|
||
|
|
||
|
if stag != "" {
|
||
|
for i, s := range strings.Split(stag, ",") {
|
||
|
if i == 0 {
|
||
|
if s != "" {
|
||
|
si.encName = s
|
||
|
}
|
||
|
} else {
|
||
|
if s == "omitempty" {
|
||
|
si.omitEmpty = true
|
||
|
} else if s == "toarray" {
|
||
|
si.toArray = true
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
// si.encNameBs = []byte(si.encName)
|
||
|
return &si
|
||
|
}
|
||
|
|
||
|
type sfiSortedByEncName []*structFieldInfo
|
||
|
|
||
|
func (p sfiSortedByEncName) Len() int {
|
||
|
return len(p)
|
||
|
}
|
||
|
|
||
|
func (p sfiSortedByEncName) Less(i, j int) bool {
|
||
|
return p[i].encName < p[j].encName
|
||
|
}
|
||
|
|
||
|
func (p sfiSortedByEncName) Swap(i, j int) {
|
||
|
p[i], p[j] = p[j], p[i]
|
||
|
}
|
||
|
|
||
|
const structFieldNodeNumToCache = 4
|
||
|
|
||
|
type structFieldNodeCache struct {
|
||
|
rv [structFieldNodeNumToCache]reflect.Value
|
||
|
idx [structFieldNodeNumToCache]uint32
|
||
|
num uint8
|
||
|
}
|
||
|
|
||
|
func (x *structFieldNodeCache) get(key uint32) (fv reflect.Value, valid bool) {
|
||
|
// defer func() { fmt.Printf(">>>> found in cache2? %v\n", valid) }()
|
||
|
for i, k := range &x.idx {
|
||
|
if uint8(i) == x.num {
|
||
|
return // break
|
||
|
}
|
||
|
if key == k {
|
||
|
return x.rv[i], true
|
||
|
}
|
||
|
}
|
||
|
return
|
||
|
}
|
||
|
|
||
|
func (x *structFieldNodeCache) tryAdd(fv reflect.Value, key uint32) {
|
||
|
if x.num < structFieldNodeNumToCache {
|
||
|
x.rv[x.num] = fv
|
||
|
x.idx[x.num] = key
|
||
|
x.num++
|
||
|
return
|
||
|
}
|
||
|
}
|
||
|
|
||
|
type structFieldNode struct {
|
||
|
v reflect.Value
|
||
|
cache2 structFieldNodeCache
|
||
|
cache3 structFieldNodeCache
|
||
|
update bool
|
||
|
}
|
||
|
|
||
|
func (x *structFieldNode) field(si *structFieldInfo) (fv reflect.Value) {
|
||
|
// return si.fieldval(x.v, x.update)
|
||
|
// Note: we only cache if nis=2 or nis=3 i.e. up to 2 levels of embedding
|
||
|
// This mostly saves us time on the repeated calls to v.Elem, v.Field, etc.
|
||
|
var valid bool
|
||
|
switch si.nis {
|
||
|
case 1:
|
||
|
fv = x.v.Field(int(si.is[0]))
|
||
|
case 2:
|
||
|
if fv, valid = x.cache2.get(uint32(si.is[0])); valid {
|
||
|
fv = fv.Field(int(si.is[1]))
|
||
|
return
|
||
|
}
|
||
|
fv = x.v.Field(int(si.is[0]))
|
||
|
if fv, valid = baseStructRv(fv, x.update); !valid {
|
||
|
return
|
||
|
}
|
||
|
x.cache2.tryAdd(fv, uint32(si.is[0]))
|
||
|
fv = fv.Field(int(si.is[1]))
|
||
|
case 3:
|
||
|
var key uint32 = uint32(si.is[0])<<16 | uint32(si.is[1])
|
||
|
if fv, valid = x.cache3.get(key); valid {
|
||
|
fv = fv.Field(int(si.is[2]))
|
||
|
return
|
||
|
}
|
||
|
fv = x.v.Field(int(si.is[0]))
|
||
|
if fv, valid = baseStructRv(fv, x.update); !valid {
|
||
|
return
|
||
|
}
|
||
|
fv = fv.Field(int(si.is[1]))
|
||
|
if fv, valid = baseStructRv(fv, x.update); !valid {
|
||
|
return
|
||
|
}
|
||
|
x.cache3.tryAdd(fv, key)
|
||
|
fv = fv.Field(int(si.is[2]))
|
||
|
default:
|
||
|
fv, _ = si.field(x.v, x.update)
|
||
|
}
|
||
|
return
|
||
|
}
|
||
|
|
||
|
func baseStructRv(v reflect.Value, update bool) (v2 reflect.Value, valid bool) {
|
||
|
for v.Kind() == reflect.Ptr {
|
||
|
if v.IsNil() {
|
||
|
if !update {
|
||
|
return
|
||
|
}
|
||
|
v.Set(reflect.New(v.Type().Elem()))
|
||
|
}
|
||
|
v = v.Elem()
|
||
|
}
|
||
|
return v, true
|
||
|
}
|
||
|
|
||
|
// typeInfo keeps information about each type referenced in the encode/decode sequence.
|
||
|
//
|
||
|
// During an encode/decode sequence, we work as below:
|
||
|
// - If base is a built in type, en/decode base value
|
||
|
// - If base is registered as an extension, en/decode base value
|
||
|
// - If type is binary(M/Unm)arshaler, call Binary(M/Unm)arshal method
|
||
|
// - If type is text(M/Unm)arshaler, call Text(M/Unm)arshal method
|
||
|
// - Else decode appropriately based on the reflect.Kind
|
||
|
type typeInfo struct {
|
||
|
sfi []*structFieldInfo // sorted. Used when enc/dec struct to map.
|
||
|
sfip []*structFieldInfo // unsorted. Used when enc/dec struct to array.
|
||
|
|
||
|
rt reflect.Type
|
||
|
rtid uintptr
|
||
|
// rv0 reflect.Value // saved zero value, used if immutableKind
|
||
|
|
||
|
numMeth uint16 // number of methods
|
||
|
|
||
|
// baseId gives pointer to the base reflect.Type, after deferencing
|
||
|
// the pointers. E.g. base type of ***time.Time is time.Time.
|
||
|
base reflect.Type
|
||
|
baseId uintptr
|
||
|
baseIndir int8 // number of indirections to get to base
|
||
|
|
||
|
anyOmitEmpty bool
|
||
|
|
||
|
mbs bool // base type (T or *T) is a MapBySlice
|
||
|
|
||
|
bm bool // base type (T or *T) is a binaryMarshaler
|
||
|
bunm bool // base type (T or *T) is a binaryUnmarshaler
|
||
|
bmIndir int8 // number of indirections to get to binaryMarshaler type
|
||
|
bunmIndir int8 // number of indirections to get to binaryUnmarshaler type
|
||
|
|
||
|
tm bool // base type (T or *T) is a textMarshaler
|
||
|
tunm bool // base type (T or *T) is a textUnmarshaler
|
||
|
tmIndir int8 // number of indirections to get to textMarshaler type
|
||
|
tunmIndir int8 // number of indirections to get to textUnmarshaler type
|
||
|
|
||
|
jm bool // base type (T or *T) is a jsonMarshaler
|
||
|
junm bool // base type (T or *T) is a jsonUnmarshaler
|
||
|
jmIndir int8 // number of indirections to get to jsonMarshaler type
|
||
|
junmIndir int8 // number of indirections to get to jsonUnmarshaler type
|
||
|
|
||
|
cs bool // base type (T or *T) is a Selfer
|
||
|
csIndir int8 // number of indirections to get to Selfer type
|
||
|
|
||
|
toArray bool // whether this (struct) type should be encoded as an array
|
||
|
}
|
||
|
|
||
|
// define length beyond which we do a binary search instead of a linear search.
|
||
|
// From our testing, linear search seems faster than binary search up to 16-field structs.
|
||
|
// However, we set to 8 similar to what python does for hashtables.
|
||
|
const indexForEncNameBinarySearchThreshold = 8
|
||
|
|
||
|
func (ti *typeInfo) indexForEncName(name string) int {
|
||
|
// NOTE: name may be a stringView, so don't pass it to another function.
|
||
|
//tisfi := ti.sfi
|
||
|
sfilen := len(ti.sfi)
|
||
|
if sfilen < indexForEncNameBinarySearchThreshold {
|
||
|
for i, si := range ti.sfi {
|
||
|
if si.encName == name {
|
||
|
return i
|
||
|
}
|
||
|
}
|
||
|
return -1
|
||
|
}
|
||
|
// binary search. adapted from sort/search.go.
|
||
|
h, i, j := 0, 0, sfilen
|
||
|
for i < j {
|
||
|
h = i + (j-i)/2
|
||
|
if ti.sfi[h].encName < name {
|
||
|
i = h + 1
|
||
|
} else {
|
||
|
j = h
|
||
|
}
|
||
|
}
|
||
|
if i < sfilen && ti.sfi[i].encName == name {
|
||
|
return i
|
||
|
}
|
||
|
return -1
|
||
|
}
|
||
|
|
||
|
type rtid2ti struct {
|
||
|
rtid uintptr
|
||
|
ti *typeInfo
|
||
|
}
|
||
|
|
||
|
// TypeInfos caches typeInfo for each type on first inspection.
|
||
|
//
|
||
|
// It is configured with a set of tag keys, which are used to get
|
||
|
// configuration for the type.
|
||
|
type TypeInfos struct {
|
||
|
infos atomicTypeInfoSlice // formerly map[uintptr]*typeInfo, now *[]rtid2ti
|
||
|
mu sync.Mutex
|
||
|
tags []string
|
||
|
}
|
||
|
|
||
|
// NewTypeInfos creates a TypeInfos given a set of struct tags keys.
|
||
|
//
|
||
|
// This allows users customize the struct tag keys which contain configuration
|
||
|
// of their types.
|
||
|
func NewTypeInfos(tags []string) *TypeInfos {
|
||
|
return &TypeInfos{tags: tags}
|
||
|
}
|
||
|
|
||
|
func (x *TypeInfos) structTag(t reflect.StructTag) (s string) {
|
||
|
// check for tags: codec, json, in that order.
|
||
|
// this allows seamless support for many configured structs.
|
||
|
for _, x := range x.tags {
|
||
|
s = t.Get(x)
|
||
|
if s != "" {
|
||
|
return s
|
||
|
}
|
||
|
}
|
||
|
return
|
||
|
}
|
||
|
|
||
|
func (x *TypeInfos) find(sp *[]rtid2ti, rtid uintptr) (idx int, ti *typeInfo) {
|
||
|
// binary search. adapted from sort/search.go.
|
||
|
// if sp == nil {
|
||
|
// return -1, nil
|
||
|
// }
|
||
|
s := *sp
|
||
|
h, i, j := 0, 0, len(s)
|
||
|
for i < j {
|
||
|
h = i + (j-i)/2
|
||
|
if s[h].rtid < rtid {
|
||
|
i = h + 1
|
||
|
} else {
|
||
|
j = h
|
||
|
}
|
||
|
}
|
||
|
if i < len(s) && s[i].rtid == rtid {
|
||
|
return i, s[i].ti
|
||
|
}
|
||
|
return i, nil
|
||
|
}
|
||
|
|
||
|
func (x *TypeInfos) get(rtid uintptr, rt reflect.Type) (pti *typeInfo) {
|
||
|
sp := x.infos.load()
|
||
|
var idx int
|
||
|
if sp != nil {
|
||
|
idx, pti = x.find(sp, rtid)
|
||
|
if pti != nil {
|
||
|
return
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// do not hold lock while computing this.
|
||
|
// it may lead to duplication, but that's ok.
|
||
|
ti := typeInfo{rt: rt, rtid: rtid}
|
||
|
// ti.rv0 = reflect.Zero(rt)
|
||
|
|
||
|
ti.numMeth = uint16(rt.NumMethod())
|
||
|
var ok bool
|
||
|
var indir int8
|
||
|
if ok, indir = implementsIntf(rt, binaryMarshalerTyp); ok {
|
||
|
ti.bm, ti.bmIndir = true, indir
|
||
|
}
|
||
|
if ok, indir = implementsIntf(rt, binaryUnmarshalerTyp); ok {
|
||
|
ti.bunm, ti.bunmIndir = true, indir
|
||
|
}
|
||
|
if ok, indir = implementsIntf(rt, textMarshalerTyp); ok {
|
||
|
ti.tm, ti.tmIndir = true, indir
|
||
|
}
|
||
|
if ok, indir = implementsIntf(rt, textUnmarshalerTyp); ok {
|
||
|
ti.tunm, ti.tunmIndir = true, indir
|
||
|
}
|
||
|
if ok, indir = implementsIntf(rt, jsonMarshalerTyp); ok {
|
||
|
ti.jm, ti.jmIndir = true, indir
|
||
|
}
|
||
|
if ok, indir = implementsIntf(rt, jsonUnmarshalerTyp); ok {
|
||
|
ti.junm, ti.junmIndir = true, indir
|
||
|
}
|
||
|
if ok, indir = implementsIntf(rt, selferTyp); ok {
|
||
|
ti.cs, ti.csIndir = true, indir
|
||
|
}
|
||
|
if ok, _ = implementsIntf(rt, mapBySliceTyp); ok {
|
||
|
ti.mbs = true
|
||
|
}
|
||
|
|
||
|
pt := rt
|
||
|
var ptIndir int8
|
||
|
// for ; pt.Kind() == reflect.Ptr; pt, ptIndir = pt.Elem(), ptIndir+1 { }
|
||
|
for pt.Kind() == reflect.Ptr {
|
||
|
pt = pt.Elem()
|
||
|
ptIndir++
|
||
|
}
|
||
|
if ptIndir == 0 {
|
||
|
ti.base = rt
|
||
|
ti.baseId = rtid
|
||
|
} else {
|
||
|
ti.base = pt
|
||
|
ti.baseId = rt2id(pt)
|
||
|
ti.baseIndir = ptIndir
|
||
|
}
|
||
|
|
||
|
if rt.Kind() == reflect.Struct {
|
||
|
var omitEmpty bool
|
||
|
if f, ok := rt.FieldByName(structInfoFieldName); ok {
|
||
|
siInfo := parseStructFieldInfo(structInfoFieldName, x.structTag(f.Tag))
|
||
|
ti.toArray = siInfo.toArray
|
||
|
omitEmpty = siInfo.omitEmpty
|
||
|
}
|
||
|
pp, pi := pool.tiLoad()
|
||
|
pv := pi.(*typeInfoLoadArray)
|
||
|
pv.etypes[0] = ti.baseId
|
||
|
vv := typeInfoLoad{pv.fNames[:0], pv.encNames[:0], pv.etypes[:1], pv.sfis[:0]}
|
||
|
x.rget(rt, rtid, omitEmpty, nil, &vv)
|
||
|
ti.sfip, ti.sfi, ti.anyOmitEmpty = rgetResolveSFI(vv.sfis, pv.sfiidx[:0])
|
||
|
pp.Put(pi)
|
||
|
}
|
||
|
// sfi = sfip
|
||
|
|
||
|
var vs []rtid2ti
|
||
|
x.mu.Lock()
|
||
|
sp = x.infos.load()
|
||
|
if sp == nil {
|
||
|
pti = &ti
|
||
|
vs = []rtid2ti{{rtid, pti}}
|
||
|
x.infos.store(&vs)
|
||
|
} else {
|
||
|
idx, pti = x.find(sp, rtid)
|
||
|
if pti == nil {
|
||
|
s := *sp
|
||
|
pti = &ti
|
||
|
vs = make([]rtid2ti, len(s)+1)
|
||
|
copy(vs, s[:idx])
|
||
|
vs[idx] = rtid2ti{rtid, pti}
|
||
|
copy(vs[idx+1:], s[idx:])
|
||
|
x.infos.store(&vs)
|
||
|
}
|
||
|
}
|
||
|
x.mu.Unlock()
|
||
|
return
|
||
|
}
|
||
|
|
||
|
func (x *TypeInfos) rget(rt reflect.Type, rtid uintptr, omitEmpty bool,
|
||
|
indexstack []uint16, pv *typeInfoLoad,
|
||
|
) {
|
||
|
// Read up fields and store how to access the value.
|
||
|
//
|
||
|
// It uses go's rules for message selectors,
|
||
|
// which say that the field with the shallowest depth is selected.
|
||
|
//
|
||
|
// Note: we consciously use slices, not a map, to simulate a set.
|
||
|
// Typically, types have < 16 fields,
|
||
|
// and iteration using equals is faster than maps there
|
||
|
flen := rt.NumField()
|
||
|
if flen > (1<<maxLevelsEmbedding - 1) {
|
||
|
panic(fmt.Errorf("codec: types with more than %v fields are not supported - has %v fields", (1<<maxLevelsEmbedding - 1), flen))
|
||
|
}
|
||
|
LOOP:
|
||
|
for j, jlen := uint16(0), uint16(flen); j < jlen; j++ {
|
||
|
f := rt.Field(int(j))
|
||
|
fkind := f.Type.Kind()
|
||
|
// skip if a func type, or is unexported, or structTag value == "-"
|
||
|
switch fkind {
|
||
|
case reflect.Func, reflect.Complex64, reflect.Complex128, reflect.UnsafePointer:
|
||
|
continue LOOP
|
||
|
}
|
||
|
|
||
|
// if r1, _ := utf8.DecodeRuneInString(f.Name);
|
||
|
// r1 == utf8.RuneError || !unicode.IsUpper(r1) {
|
||
|
if f.PkgPath != "" && !f.Anonymous { // unexported, not embedded
|
||
|
continue
|
||
|
}
|
||
|
stag := x.structTag(f.Tag)
|
||
|
if stag == "-" {
|
||
|
continue
|
||
|
}
|
||
|
var si *structFieldInfo
|
||
|
// if anonymous and no struct tag (or it's blank),
|
||
|
// and a struct (or pointer to struct), inline it.
|
||
|
if f.Anonymous && fkind != reflect.Interface {
|
||
|
doInline := stag == ""
|
||
|
if !doInline {
|
||
|
si = parseStructFieldInfo("", stag)
|
||
|
doInline = si.encName == ""
|
||
|
// doInline = si.isZero()
|
||
|
}
|
||
|
if doInline {
|
||
|
ft := f.Type
|
||
|
for ft.Kind() == reflect.Ptr {
|
||
|
ft = ft.Elem()
|
||
|
}
|
||
|
if ft.Kind() == reflect.Struct {
|
||
|
// if etypes contains this, don't call rget again (as fields are already seen here)
|
||
|
ftid := rt2id(ft)
|
||
|
// We cannot recurse forever, but we need to track other field depths.
|
||
|
// So - we break if we see a type twice (not the first time).
|
||
|
// This should be sufficient to handle an embedded type that refers to its
|
||
|
// owning type, which then refers to its embedded type.
|
||
|
processIt := true
|
||
|
numk := 0
|
||
|
for _, k := range pv.etypes {
|
||
|
if k == ftid {
|
||
|
numk++
|
||
|
if numk == rgetMaxRecursion {
|
||
|
processIt = false
|
||
|
break
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if processIt {
|
||
|
pv.etypes = append(pv.etypes, ftid)
|
||
|
indexstack2 := make([]uint16, len(indexstack)+1)
|
||
|
copy(indexstack2, indexstack)
|
||
|
indexstack2[len(indexstack)] = j
|
||
|
// indexstack2 := append(append(make([]int, 0, len(indexstack)+4), indexstack...), j)
|
||
|
x.rget(ft, ftid, omitEmpty, indexstack2, pv)
|
||
|
}
|
||
|
continue
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// after the anonymous dance: if an unexported field, skip
|
||
|
if f.PkgPath != "" { // unexported
|
||
|
continue
|
||
|
}
|
||
|
|
||
|
if f.Name == "" {
|
||
|
panic(noFieldNameToStructFieldInfoErr)
|
||
|
}
|
||
|
|
||
|
pv.fNames = append(pv.fNames, f.Name)
|
||
|
|
||
|
if si == nil {
|
||
|
si = parseStructFieldInfo(f.Name, stag)
|
||
|
} else if si.encName == "" {
|
||
|
si.encName = f.Name
|
||
|
}
|
||
|
si.fieldName = f.Name
|
||
|
|
||
|
pv.encNames = append(pv.encNames, si.encName)
|
||
|
|
||
|
// si.ikind = int(f.Type.Kind())
|
||
|
if len(indexstack) > maxLevelsEmbedding-1 {
|
||
|
panic(fmt.Errorf("codec: only supports up to %v depth of embedding - type has %v depth", maxLevelsEmbedding-1, len(indexstack)))
|
||
|
}
|
||
|
si.nis = uint8(len(indexstack)) + 1
|
||
|
copy(si.is[:], indexstack)
|
||
|
si.is[len(indexstack)] = j
|
||
|
|
||
|
if omitEmpty {
|
||
|
si.omitEmpty = true
|
||
|
}
|
||
|
pv.sfis = append(pv.sfis, si)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// resolves the struct field info got from a call to rget.
|
||
|
// Returns a trimmed, unsorted and sorted []*structFieldInfo.
|
||
|
func rgetResolveSFI(x []*structFieldInfo, pv []sfiIdx) (y, z []*structFieldInfo, anyOmitEmpty bool) {
|
||
|
var n int
|
||
|
for i, v := range x {
|
||
|
xn := v.encName // TODO: fieldName or encName? use encName for now.
|
||
|
var found bool
|
||
|
for j, k := range pv {
|
||
|
if k.name == xn {
|
||
|
// one of them must be reset to nil, and the index updated appropriately to the other one
|
||
|
if v.nis == x[k.index].nis {
|
||
|
} else if v.nis < x[k.index].nis {
|
||
|
pv[j].index = i
|
||
|
if x[k.index] != nil {
|
||
|
x[k.index] = nil
|
||
|
n++
|
||
|
}
|
||
|
} else {
|
||
|
if x[i] != nil {
|
||
|
x[i] = nil
|
||
|
n++
|
||
|
}
|
||
|
}
|
||
|
found = true
|
||
|
break
|
||
|
}
|
||
|
}
|
||
|
if !found {
|
||
|
pv = append(pv, sfiIdx{xn, i})
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// remove all the nils
|
||
|
y = make([]*structFieldInfo, len(x)-n)
|
||
|
n = 0
|
||
|
for _, v := range x {
|
||
|
if v == nil {
|
||
|
continue
|
||
|
}
|
||
|
if !anyOmitEmpty && v.omitEmpty {
|
||
|
anyOmitEmpty = true
|
||
|
}
|
||
|
y[n] = v
|
||
|
n++
|
||
|
}
|
||
|
|
||
|
z = make([]*structFieldInfo, len(y))
|
||
|
copy(z, y)
|
||
|
sort.Sort(sfiSortedByEncName(z))
|
||
|
return
|
||
|
}
|
||
|
|
||
|
func xprintf(format string, a ...interface{}) {
|
||
|
if xDebug {
|
||
|
fmt.Fprintf(os.Stderr, format, a...)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func panicToErr(err *error) {
|
||
|
if recoverPanicToErr {
|
||
|
if x := recover(); x != nil {
|
||
|
// if false && xDebug {
|
||
|
// fmt.Printf("panic'ing with: %v\n", x)
|
||
|
// debug.PrintStack()
|
||
|
// }
|
||
|
panicValToErr(x, err)
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func panicToErrs2(err1, err2 *error) {
|
||
|
if recoverPanicToErr {
|
||
|
if x := recover(); x != nil {
|
||
|
panicValToErr(x, err1)
|
||
|
panicValToErr(x, err2)
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// func doPanic(tag string, format string, params ...interface{}) {
|
||
|
// params2 := make([]interface{}, len(params)+1)
|
||
|
// params2[0] = tag
|
||
|
// copy(params2[1:], params)
|
||
|
// panic(fmt.Errorf("%s: "+format, params2...))
|
||
|
// }
|
||
|
|
||
|
func isImmutableKind(k reflect.Kind) (v bool) {
|
||
|
return immutableKindsSet[k]
|
||
|
// return false ||
|
||
|
// k == reflect.Int ||
|
||
|
// k == reflect.Int8 ||
|
||
|
// k == reflect.Int16 ||
|
||
|
// k == reflect.Int32 ||
|
||
|
// k == reflect.Int64 ||
|
||
|
// k == reflect.Uint ||
|
||
|
// k == reflect.Uint8 ||
|
||
|
// k == reflect.Uint16 ||
|
||
|
// k == reflect.Uint32 ||
|
||
|
// k == reflect.Uint64 ||
|
||
|
// k == reflect.Uintptr ||
|
||
|
// k == reflect.Float32 ||
|
||
|
// k == reflect.Float64 ||
|
||
|
// k == reflect.Bool ||
|
||
|
// k == reflect.String
|
||
|
}
|
||
|
|
||
|
// ----
|
||
|
|
||
|
type codecFnInfo struct {
|
||
|
ti *typeInfo
|
||
|
xfFn Ext
|
||
|
xfTag uint64
|
||
|
seq seqType
|
||
|
addr bool
|
||
|
}
|
||
|
|
||
|
// codecFn encapsulates the captured variables and the encode function.
|
||
|
// This way, we only do some calculations one times, and pass to the
|
||
|
// code block that should be called (encapsulated in a function)
|
||
|
// instead of executing the checks every time.
|
||
|
type codecFn struct {
|
||
|
i codecFnInfo
|
||
|
fe func(*Encoder, *codecFnInfo, reflect.Value)
|
||
|
fd func(*Decoder, *codecFnInfo, reflect.Value)
|
||
|
}
|
||
|
|
||
|
type codecRtidFn struct {
|
||
|
rtid uintptr
|
||
|
fn codecFn
|
||
|
}
|
||
|
|
||
|
type codecFner struct {
|
||
|
hh Handle
|
||
|
h *BasicHandle
|
||
|
cs [arrayCacheLen]*[arrayCacheLen]codecRtidFn
|
||
|
s []*[arrayCacheLen]codecRtidFn
|
||
|
sn uint32
|
||
|
be bool
|
||
|
js bool
|
||
|
cf [arrayCacheLen]codecRtidFn
|
||
|
}
|
||
|
|
||
|
func (c *codecFner) reset(hh Handle) {
|
||
|
c.hh = hh
|
||
|
c.h = hh.getBasicHandle()
|
||
|
_, c.js = hh.(*JsonHandle)
|
||
|
c.be = hh.isBinary()
|
||
|
}
|
||
|
|
||
|
func (c *codecFner) get(rt reflect.Type, checkFastpath, checkCodecSelfer bool) (fn *codecFn) {
|
||
|
rtid := rt2id(rt)
|
||
|
var j uint32
|
||
|
var sn uint32 = c.sn
|
||
|
if sn == 0 {
|
||
|
c.s = c.cs[:1]
|
||
|
c.s[0] = &c.cf
|
||
|
c.cf[0].rtid = rtid
|
||
|
fn = &(c.cf[0].fn)
|
||
|
c.sn = 1
|
||
|
} else {
|
||
|
LOOP1:
|
||
|
for _, x := range c.s {
|
||
|
for i := range x {
|
||
|
if j == sn {
|
||
|
break LOOP1
|
||
|
}
|
||
|
if x[i].rtid == rtid {
|
||
|
fn = &(x[i].fn)
|
||
|
return
|
||
|
}
|
||
|
j++
|
||
|
}
|
||
|
}
|
||
|
sx, sy := sn/arrayCacheLen, sn%arrayCacheLen
|
||
|
if sy == 0 {
|
||
|
c.s = append(c.s, &[arrayCacheLen]codecRtidFn{})
|
||
|
}
|
||
|
c.s[sx][sy].rtid = rtid
|
||
|
fn = &(c.s[sx][sy].fn)
|
||
|
c.sn++
|
||
|
}
|
||
|
|
||
|
ti := c.h.getTypeInfo(rtid, rt)
|
||
|
fi := &(fn.i)
|
||
|
fi.ti = ti
|
||
|
|
||
|
if checkCodecSelfer && ti.cs {
|
||
|
fn.fe = (*Encoder).selferMarshal
|
||
|
fn.fd = (*Decoder).selferUnmarshal
|
||
|
} else if rtid == rawTypId {
|
||
|
fn.fe = (*Encoder).raw
|
||
|
fn.fd = (*Decoder).raw
|
||
|
} else if rtid == rawExtTypId {
|
||
|
fn.fe = (*Encoder).rawExt
|
||
|
fn.fd = (*Decoder).rawExt
|
||
|
fn.i.addr = true
|
||
|
} else if c.hh.IsBuiltinType(rtid) {
|
||
|
fn.fe = (*Encoder).builtin
|
||
|
fn.fd = (*Decoder).builtin
|
||
|
fn.i.addr = true
|
||
|
} else if xfFn := c.h.getExt(rtid); xfFn != nil {
|
||
|
fi.xfTag, fi.xfFn = xfFn.tag, xfFn.ext
|
||
|
fn.fe = (*Encoder).ext
|
||
|
fn.fd = (*Decoder).ext
|
||
|
fn.i.addr = true
|
||
|
} else if supportMarshalInterfaces && c.be && ti.bm {
|
||
|
fn.fe = (*Encoder).binaryMarshal
|
||
|
fn.fd = (*Decoder).binaryUnmarshal
|
||
|
} else if supportMarshalInterfaces && !c.be && c.js && ti.jm {
|
||
|
//If JSON, we should check JSONMarshal before textMarshal
|
||
|
fn.fe = (*Encoder).jsonMarshal
|
||
|
fn.fd = (*Decoder).jsonUnmarshal
|
||
|
} else if supportMarshalInterfaces && !c.be && ti.tm {
|
||
|
fn.fe = (*Encoder).textMarshal
|
||
|
fn.fd = (*Decoder).textUnmarshal
|
||
|
} else {
|
||
|
rk := rt.Kind()
|
||
|
if fastpathEnabled && checkFastpath && (rk == reflect.Map || rk == reflect.Slice) {
|
||
|
if rt.PkgPath() == "" { // un-named slice or map
|
||
|
if idx := fastpathAV.index(rtid); idx != -1 {
|
||
|
fn.fe = fastpathAV[idx].encfn
|
||
|
fn.fd = fastpathAV[idx].decfn
|
||
|
fn.i.addr = true
|
||
|
}
|
||
|
} else {
|
||
|
// use mapping for underlying type if there
|
||
|
var rtu reflect.Type
|
||
|
if rk == reflect.Map {
|
||
|
rtu = reflect.MapOf(rt.Key(), rt.Elem())
|
||
|
} else {
|
||
|
rtu = reflect.SliceOf(rt.Elem())
|
||
|
}
|
||
|
rtuid := rt2id(rtu)
|
||
|
if idx := fastpathAV.index(rtuid); idx != -1 {
|
||
|
xfnf := fastpathAV[idx].encfn
|
||
|
xrt := fastpathAV[idx].rt
|
||
|
fn.fe = func(e *Encoder, xf *codecFnInfo, xrv reflect.Value) {
|
||
|
xfnf(e, xf, xrv.Convert(xrt))
|
||
|
}
|
||
|
fn.i.addr = true
|
||
|
xfnf2 := fastpathAV[idx].decfn
|
||
|
fn.fd = func(d *Decoder, xf *codecFnInfo, xrv reflect.Value) {
|
||
|
xfnf2(d, xf, xrv.Convert(reflect.PtrTo(xrt)))
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if fn.fe == nil && fn.fd == nil {
|
||
|
switch rk {
|
||
|
case reflect.Bool:
|
||
|
fn.fe = (*Encoder).kBool
|
||
|
fn.fd = (*Decoder).kBool
|
||
|
case reflect.String:
|
||
|
fn.fe = (*Encoder).kString
|
||
|
fn.fd = (*Decoder).kString
|
||
|
case reflect.Int:
|
||
|
fn.fd = (*Decoder).kInt
|
||
|
fn.fe = (*Encoder).kInt
|
||
|
case reflect.Int8:
|
||
|
fn.fe = (*Encoder).kInt
|
||
|
fn.fd = (*Decoder).kInt8
|
||
|
case reflect.Int16:
|
||
|
fn.fe = (*Encoder).kInt
|
||
|
fn.fd = (*Decoder).kInt16
|
||
|
case reflect.Int32:
|
||
|
fn.fe = (*Encoder).kInt
|
||
|
fn.fd = (*Decoder).kInt32
|
||
|
case reflect.Int64:
|
||
|
fn.fe = (*Encoder).kInt
|
||
|
fn.fd = (*Decoder).kInt64
|
||
|
case reflect.Uint:
|
||
|
fn.fd = (*Decoder).kUint
|
||
|
fn.fe = (*Encoder).kUint
|
||
|
case reflect.Uint8:
|
||
|
fn.fe = (*Encoder).kUint
|
||
|
fn.fd = (*Decoder).kUint8
|
||
|
case reflect.Uint16:
|
||
|
fn.fe = (*Encoder).kUint
|
||
|
fn.fd = (*Decoder).kUint16
|
||
|
case reflect.Uint32:
|
||
|
fn.fe = (*Encoder).kUint
|
||
|
fn.fd = (*Decoder).kUint32
|
||
|
case reflect.Uint64:
|
||
|
fn.fe = (*Encoder).kUint
|
||
|
fn.fd = (*Decoder).kUint64
|
||
|
// case reflect.Ptr:
|
||
|
// fn.fd = (*Decoder).kPtr
|
||
|
case reflect.Uintptr:
|
||
|
fn.fe = (*Encoder).kUint
|
||
|
fn.fd = (*Decoder).kUintptr
|
||
|
case reflect.Float32:
|
||
|
fn.fe = (*Encoder).kFloat32
|
||
|
fn.fd = (*Decoder).kFloat32
|
||
|
case reflect.Float64:
|
||
|
fn.fe = (*Encoder).kFloat64
|
||
|
fn.fd = (*Decoder).kFloat64
|
||
|
case reflect.Invalid:
|
||
|
fn.fe = (*Encoder).kInvalid
|
||
|
case reflect.Chan:
|
||
|
fi.seq = seqTypeChan
|
||
|
fn.fe = (*Encoder).kSlice
|
||
|
fn.fd = (*Decoder).kSlice
|
||
|
case reflect.Slice:
|
||
|
fi.seq = seqTypeSlice
|
||
|
fn.fe = (*Encoder).kSlice
|
||
|
fn.fd = (*Decoder).kSlice
|
||
|
case reflect.Array:
|
||
|
fi.seq = seqTypeArray
|
||
|
fn.fe = (*Encoder).kSlice
|
||
|
fi.addr = false
|
||
|
rt2 := reflect.SliceOf(rt.Elem())
|
||
|
fn.fd = func(d *Decoder, xf *codecFnInfo, xrv reflect.Value) {
|
||
|
// println(">>>>>> decoding an array ... ")
|
||
|
d.cf.get(rt2, true, false).fd(d, xf, xrv.Slice(0, xrv.Len()))
|
||
|
// println(">>>>>> decoding an array ... DONE")
|
||
|
}
|
||
|
// fn.fd = (*Decoder).kArray
|
||
|
case reflect.Struct:
|
||
|
if ti.anyOmitEmpty {
|
||
|
fn.fe = (*Encoder).kStruct
|
||
|
} else {
|
||
|
fn.fe = (*Encoder).kStructNoOmitempty
|
||
|
}
|
||
|
fn.fd = (*Decoder).kStruct
|
||
|
// reflect.Ptr and reflect.Interface are handled already by preEncodeValue
|
||
|
// case reflect.Ptr:
|
||
|
// fn.fe = (*Encoder).kPtr
|
||
|
// case reflect.Interface:
|
||
|
// fn.fe = (*Encoder).kInterface
|
||
|
case reflect.Map:
|
||
|
fn.fe = (*Encoder).kMap
|
||
|
fn.fd = (*Decoder).kMap
|
||
|
case reflect.Interface:
|
||
|
// encode: reflect.Interface are handled already by preEncodeValue
|
||
|
fn.fd = (*Decoder).kInterface
|
||
|
default:
|
||
|
fn.fe = (*Encoder).kErr
|
||
|
fn.fd = (*Decoder).kErr
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// ----
|
||
|
|
||
|
// these functions must be inlinable, and not call anybody
|
||
|
type checkOverflow struct{}
|
||
|
|
||
|
func (_ checkOverflow) Float32(f float64) (overflow bool) {
|
||
|
if f < 0 {
|
||
|
f = -f
|
||
|
}
|
||
|
return math.MaxFloat32 < f && f <= math.MaxFloat64
|
||
|
}
|
||
|
|
||
|
func (_ checkOverflow) Uint(v uint64, bitsize uint8) (overflow bool) {
|
||
|
if bitsize == 0 || bitsize >= 64 || v == 0 {
|
||
|
return
|
||
|
}
|
||
|
if trunc := (v << (64 - bitsize)) >> (64 - bitsize); v != trunc {
|
||
|
overflow = true
|
||
|
}
|
||
|
return
|
||
|
}
|
||
|
|
||
|
func (_ checkOverflow) Int(v int64, bitsize uint8) (overflow bool) {
|
||
|
if bitsize == 0 || bitsize >= 64 || v == 0 {
|
||
|
return
|
||
|
}
|
||
|
if trunc := (v << (64 - bitsize)) >> (64 - bitsize); v != trunc {
|
||
|
overflow = true
|
||
|
}
|
||
|
return
|
||
|
}
|
||
|
|
||
|
func (_ checkOverflow) SignedInt(v uint64) (i int64, overflow bool) {
|
||
|
//e.g. -127 to 128 for int8
|
||
|
pos := (v >> 63) == 0
|
||
|
ui2 := v & 0x7fffffffffffffff
|
||
|
if pos {
|
||
|
if ui2 > math.MaxInt64 {
|
||
|
overflow = true
|
||
|
return
|
||
|
}
|
||
|
} else {
|
||
|
if ui2 > math.MaxInt64-1 {
|
||
|
overflow = true
|
||
|
return
|
||
|
}
|
||
|
}
|
||
|
i = int64(v)
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// ------------------ SORT -----------------
|
||
|
|
||
|
func isNaN(f float64) bool { return f != f }
|
||
|
|
||
|
// -----------------------
|
||
|
|
||
|
type intSlice []int64
|
||
|
type uintSlice []uint64
|
||
|
type uintptrSlice []uintptr
|
||
|
type floatSlice []float64
|
||
|
type boolSlice []bool
|
||
|
type stringSlice []string
|
||
|
type bytesSlice [][]byte
|
||
|
|
||
|
func (p intSlice) Len() int { return len(p) }
|
||
|
func (p intSlice) Less(i, j int) bool { return p[i] < p[j] }
|
||
|
func (p intSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
|
||
|
|
||
|
func (p uintSlice) Len() int { return len(p) }
|
||
|
func (p uintSlice) Less(i, j int) bool { return p[i] < p[j] }
|
||
|
func (p uintSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
|
||
|
|
||
|
func (p uintptrSlice) Len() int { return len(p) }
|
||
|
func (p uintptrSlice) Less(i, j int) bool { return p[i] < p[j] }
|
||
|
func (p uintptrSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
|
||
|
|
||
|
func (p floatSlice) Len() int { return len(p) }
|
||
|
func (p floatSlice) Less(i, j int) bool {
|
||
|
return p[i] < p[j] || isNaN(p[i]) && !isNaN(p[j])
|
||
|
}
|
||
|
func (p floatSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
|
||
|
|
||
|
func (p stringSlice) Len() int { return len(p) }
|
||
|
func (p stringSlice) Less(i, j int) bool { return p[i] < p[j] }
|
||
|
func (p stringSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
|
||
|
|
||
|
func (p bytesSlice) Len() int { return len(p) }
|
||
|
func (p bytesSlice) Less(i, j int) bool { return bytes.Compare(p[i], p[j]) == -1 }
|
||
|
func (p bytesSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
|
||
|
|
||
|
func (p boolSlice) Len() int { return len(p) }
|
||
|
func (p boolSlice) Less(i, j int) bool { return !p[i] && p[j] }
|
||
|
func (p boolSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
|
||
|
|
||
|
// ---------------------
|
||
|
|
||
|
type intRv struct {
|
||
|
v int64
|
||
|
r reflect.Value
|
||
|
}
|
||
|
type intRvSlice []intRv
|
||
|
type uintRv struct {
|
||
|
v uint64
|
||
|
r reflect.Value
|
||
|
}
|
||
|
type uintRvSlice []uintRv
|
||
|
type floatRv struct {
|
||
|
v float64
|
||
|
r reflect.Value
|
||
|
}
|
||
|
type floatRvSlice []floatRv
|
||
|
type boolRv struct {
|
||
|
v bool
|
||
|
r reflect.Value
|
||
|
}
|
||
|
type boolRvSlice []boolRv
|
||
|
type stringRv struct {
|
||
|
v string
|
||
|
r reflect.Value
|
||
|
}
|
||
|
type stringRvSlice []stringRv
|
||
|
type bytesRv struct {
|
||
|
v []byte
|
||
|
r reflect.Value
|
||
|
}
|
||
|
type bytesRvSlice []bytesRv
|
||
|
|
||
|
func (p intRvSlice) Len() int { return len(p) }
|
||
|
func (p intRvSlice) Less(i, j int) bool { return p[i].v < p[j].v }
|
||
|
func (p intRvSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
|
||
|
|
||
|
func (p uintRvSlice) Len() int { return len(p) }
|
||
|
func (p uintRvSlice) Less(i, j int) bool { return p[i].v < p[j].v }
|
||
|
func (p uintRvSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
|
||
|
|
||
|
func (p floatRvSlice) Len() int { return len(p) }
|
||
|
func (p floatRvSlice) Less(i, j int) bool {
|
||
|
return p[i].v < p[j].v || isNaN(p[i].v) && !isNaN(p[j].v)
|
||
|
}
|
||
|
func (p floatRvSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
|
||
|
|
||
|
func (p stringRvSlice) Len() int { return len(p) }
|
||
|
func (p stringRvSlice) Less(i, j int) bool { return p[i].v < p[j].v }
|
||
|
func (p stringRvSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
|
||
|
|
||
|
func (p bytesRvSlice) Len() int { return len(p) }
|
||
|
func (p bytesRvSlice) Less(i, j int) bool { return bytes.Compare(p[i].v, p[j].v) == -1 }
|
||
|
func (p bytesRvSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
|
||
|
|
||
|
func (p boolRvSlice) Len() int { return len(p) }
|
||
|
func (p boolRvSlice) Less(i, j int) bool { return !p[i].v && p[j].v }
|
||
|
func (p boolRvSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
|
||
|
|
||
|
// -----------------
|
||
|
|
||
|
type bytesI struct {
|
||
|
v []byte
|
||
|
i interface{}
|
||
|
}
|
||
|
|
||
|
type bytesISlice []bytesI
|
||
|
|
||
|
func (p bytesISlice) Len() int { return len(p) }
|
||
|
func (p bytesISlice) Less(i, j int) bool { return bytes.Compare(p[i].v, p[j].v) == -1 }
|
||
|
func (p bytesISlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
|
||
|
|
||
|
// -----------------
|
||
|
|
||
|
type set []uintptr
|
||
|
|
||
|
func (s *set) add(v uintptr) (exists bool) {
|
||
|
// e.ci is always nil, or len >= 1
|
||
|
x := *s
|
||
|
if x == nil {
|
||
|
x = make([]uintptr, 1, 8)
|
||
|
x[0] = v
|
||
|
*s = x
|
||
|
return
|
||
|
}
|
||
|
// typically, length will be 1. make this perform.
|
||
|
if len(x) == 1 {
|
||
|
if j := x[0]; j == 0 {
|
||
|
x[0] = v
|
||
|
} else if j == v {
|
||
|
exists = true
|
||
|
} else {
|
||
|
x = append(x, v)
|
||
|
*s = x
|
||
|
}
|
||
|
return
|
||
|
}
|
||
|
// check if it exists
|
||
|
for _, j := range x {
|
||
|
if j == v {
|
||
|
exists = true
|
||
|
return
|
||
|
}
|
||
|
}
|
||
|
// try to replace a "deleted" slot
|
||
|
for i, j := range x {
|
||
|
if j == 0 {
|
||
|
x[i] = v
|
||
|
return
|
||
|
}
|
||
|
}
|
||
|
// if unable to replace deleted slot, just append it.
|
||
|
x = append(x, v)
|
||
|
*s = x
|
||
|
return
|
||
|
}
|
||
|
|
||
|
func (s *set) remove(v uintptr) (exists bool) {
|
||
|
x := *s
|
||
|
if len(x) == 0 {
|
||
|
return
|
||
|
}
|
||
|
if len(x) == 1 {
|
||
|
if x[0] == v {
|
||
|
x[0] = 0
|
||
|
}
|
||
|
return
|
||
|
}
|
||
|
for i, j := range x {
|
||
|
if j == v {
|
||
|
exists = true
|
||
|
x[i] = 0 // set it to 0, as way to delete it.
|
||
|
// copy(x[i:], x[i+1:])
|
||
|
// x = x[:len(x)-1]
|
||
|
return
|
||
|
}
|
||
|
}
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// ------
|
||
|
|
||
|
// bitset types are better than [256]bool, because they permit the whole
|
||
|
// bitset array being on a single cache line and use less memory.
|
||
|
|
||
|
// given x > 0 and n > 0 and x is exactly 2^n, then pos/x === pos>>n AND pos%x === pos&(x-1).
|
||
|
// consequently, pos/32 === pos>>5, pos/16 === pos>>4, pos/8 === pos>>3, pos%8 == pos&7
|
||
|
|
||
|
type bitset256 [32]byte
|
||
|
|
||
|
func (x *bitset256) set(pos byte) {
|
||
|
x[pos>>3] |= (1 << (pos & 7))
|
||
|
}
|
||
|
func (x *bitset256) unset(pos byte) {
|
||
|
x[pos>>3] &^= (1 << (pos & 7))
|
||
|
}
|
||
|
func (x *bitset256) isset(pos byte) bool {
|
||
|
return x[pos>>3]&(1<<(pos&7)) != 0
|
||
|
}
|
||
|
|
||
|
type bitset128 [16]byte
|
||
|
|
||
|
func (x *bitset128) set(pos byte) {
|
||
|
x[pos>>3] |= (1 << (pos & 7))
|
||
|
}
|
||
|
func (x *bitset128) unset(pos byte) {
|
||
|
x[pos>>3] &^= (1 << (pos & 7))
|
||
|
}
|
||
|
func (x *bitset128) isset(pos byte) bool {
|
||
|
return x[pos>>3]&(1<<(pos&7)) != 0
|
||
|
}
|
||
|
|
||
|
// ------------
|
||
|
|
||
|
type pooler struct {
|
||
|
// for stringRV
|
||
|
strRv8, strRv16, strRv32, strRv64, strRv128 sync.Pool
|
||
|
// for the decNaked
|
||
|
dn sync.Pool
|
||
|
tiload sync.Pool
|
||
|
}
|
||
|
|
||
|
func (p *pooler) init() {
|
||
|
p.strRv8.New = func() interface{} { return new([8]stringRv) }
|
||
|
p.strRv16.New = func() interface{} { return new([16]stringRv) }
|
||
|
p.strRv32.New = func() interface{} { return new([32]stringRv) }
|
||
|
p.strRv64.New = func() interface{} { return new([64]stringRv) }
|
||
|
p.strRv128.New = func() interface{} { return new([128]stringRv) }
|
||
|
p.dn.New = func() interface{} { x := new(decNaked); x.init(); return x }
|
||
|
p.tiload.New = func() interface{} { return new(typeInfoLoadArray) }
|
||
|
}
|
||
|
|
||
|
func (p *pooler) stringRv8() (sp *sync.Pool, v interface{}) {
|
||
|
return &p.strRv8, p.strRv8.Get()
|
||
|
}
|
||
|
func (p *pooler) stringRv16() (sp *sync.Pool, v interface{}) {
|
||
|
return &p.strRv16, p.strRv16.Get()
|
||
|
}
|
||
|
func (p *pooler) stringRv32() (sp *sync.Pool, v interface{}) {
|
||
|
return &p.strRv32, p.strRv32.Get()
|
||
|
}
|
||
|
func (p *pooler) stringRv64() (sp *sync.Pool, v interface{}) {
|
||
|
return &p.strRv64, p.strRv64.Get()
|
||
|
}
|
||
|
func (p *pooler) stringRv128() (sp *sync.Pool, v interface{}) {
|
||
|
return &p.strRv128, p.strRv128.Get()
|
||
|
}
|
||
|
func (p *pooler) decNaked() (sp *sync.Pool, v interface{}) {
|
||
|
return &p.dn, p.dn.Get()
|
||
|
}
|
||
|
func (p *pooler) tiLoad() (sp *sync.Pool, v interface{}) {
|
||
|
return &p.tiload, p.tiload.Get()
|
||
|
}
|