mirror of https://github.com/k3s-io/k3s
351 lines
9.3 KiB
Go
351 lines
9.3 KiB
Go
|
// Copyright ©2013 The Gonum Authors. All rights reserved.
|
|||
|
// Use of this source code is governed by a BSD-style
|
|||
|
// license that can be found in the LICENSE file.
|
|||
|
|
|||
|
package mat
|
|||
|
|
|||
|
import (
|
|||
|
"gonum.org/v1/gonum/lapack"
|
|||
|
"gonum.org/v1/gonum/lapack/lapack64"
|
|||
|
)
|
|||
|
|
|||
|
const (
|
|||
|
badFact = "mat: use without successful factorization"
|
|||
|
badNoVect = "mat: eigenvectors not computed"
|
|||
|
)
|
|||
|
|
|||
|
// EigenSym is a type for creating and manipulating the Eigen decomposition of
|
|||
|
// symmetric matrices.
|
|||
|
type EigenSym struct {
|
|||
|
vectorsComputed bool
|
|||
|
|
|||
|
values []float64
|
|||
|
vectors *Dense
|
|||
|
}
|
|||
|
|
|||
|
// Factorize computes the eigenvalue decomposition of the symmetric matrix a.
|
|||
|
// The Eigen decomposition is defined as
|
|||
|
// A = P * D * P^-1
|
|||
|
// where D is a diagonal matrix containing the eigenvalues of the matrix, and
|
|||
|
// P is a matrix of the eigenvectors of A. Factorize computes the eigenvalues
|
|||
|
// in ascending order. If the vectors input argument is false, the eigenvectors
|
|||
|
// are not computed.
|
|||
|
//
|
|||
|
// Factorize returns whether the decomposition succeeded. If the decomposition
|
|||
|
// failed, methods that require a successful factorization will panic.
|
|||
|
func (e *EigenSym) Factorize(a Symmetric, vectors bool) (ok bool) {
|
|||
|
// kill previous decomposition
|
|||
|
e.vectorsComputed = false
|
|||
|
e.values = e.values[:]
|
|||
|
|
|||
|
n := a.Symmetric()
|
|||
|
sd := NewSymDense(n, nil)
|
|||
|
sd.CopySym(a)
|
|||
|
|
|||
|
jobz := lapack.EVNone
|
|||
|
if vectors {
|
|||
|
jobz = lapack.EVCompute
|
|||
|
}
|
|||
|
w := make([]float64, n)
|
|||
|
work := []float64{0}
|
|||
|
lapack64.Syev(jobz, sd.mat, w, work, -1)
|
|||
|
|
|||
|
work = getFloats(int(work[0]), false)
|
|||
|
ok = lapack64.Syev(jobz, sd.mat, w, work, len(work))
|
|||
|
putFloats(work)
|
|||
|
if !ok {
|
|||
|
e.vectorsComputed = false
|
|||
|
e.values = nil
|
|||
|
e.vectors = nil
|
|||
|
return false
|
|||
|
}
|
|||
|
e.vectorsComputed = vectors
|
|||
|
e.values = w
|
|||
|
e.vectors = NewDense(n, n, sd.mat.Data)
|
|||
|
return true
|
|||
|
}
|
|||
|
|
|||
|
// succFact returns whether the receiver contains a successful factorization.
|
|||
|
func (e *EigenSym) succFact() bool {
|
|||
|
return len(e.values) != 0
|
|||
|
}
|
|||
|
|
|||
|
// Values extracts the eigenvalues of the factorized matrix. If dst is
|
|||
|
// non-nil, the values are stored in-place into dst. In this case
|
|||
|
// dst must have length n, otherwise Values will panic. If dst is
|
|||
|
// nil, then a new slice will be allocated of the proper length and filled
|
|||
|
// with the eigenvalues.
|
|||
|
//
|
|||
|
// Values panics if the Eigen decomposition was not successful.
|
|||
|
func (e *EigenSym) Values(dst []float64) []float64 {
|
|||
|
if !e.succFact() {
|
|||
|
panic(badFact)
|
|||
|
}
|
|||
|
if dst == nil {
|
|||
|
dst = make([]float64, len(e.values))
|
|||
|
}
|
|||
|
if len(dst) != len(e.values) {
|
|||
|
panic(ErrSliceLengthMismatch)
|
|||
|
}
|
|||
|
copy(dst, e.values)
|
|||
|
return dst
|
|||
|
}
|
|||
|
|
|||
|
// VectorsTo returns the eigenvectors of the decomposition. VectorsTo
|
|||
|
// will panic if the eigenvectors were not computed during the factorization,
|
|||
|
// or if the factorization was not successful.
|
|||
|
//
|
|||
|
// If dst is not nil, the eigenvectors are stored in-place into dst, and dst
|
|||
|
// must have size n×n and panics otherwise. If dst is nil, a new matrix
|
|||
|
// is allocated and returned.
|
|||
|
func (e *EigenSym) VectorsTo(dst *Dense) *Dense {
|
|||
|
if !e.succFact() {
|
|||
|
panic(badFact)
|
|||
|
}
|
|||
|
if !e.vectorsComputed {
|
|||
|
panic(badNoVect)
|
|||
|
}
|
|||
|
r, c := e.vectors.Dims()
|
|||
|
if dst == nil {
|
|||
|
dst = NewDense(r, c, nil)
|
|||
|
} else {
|
|||
|
dst.reuseAs(r, c)
|
|||
|
}
|
|||
|
dst.Copy(e.vectors)
|
|||
|
return dst
|
|||
|
}
|
|||
|
|
|||
|
// EigenKind specifies the computation of eigenvectors during factorization.
|
|||
|
type EigenKind int
|
|||
|
|
|||
|
const (
|
|||
|
// EigenNone specifies to not compute any eigenvectors.
|
|||
|
EigenNone EigenKind = 0
|
|||
|
// EigenLeft specifies to compute the left eigenvectors.
|
|||
|
EigenLeft EigenKind = 1 << iota
|
|||
|
// EigenRight specifies to compute the right eigenvectors.
|
|||
|
EigenRight
|
|||
|
// EigenBoth is a convenience value for computing both eigenvectors.
|
|||
|
EigenBoth EigenKind = EigenLeft | EigenRight
|
|||
|
)
|
|||
|
|
|||
|
// Eigen is a type for creating and using the eigenvalue decomposition of a dense matrix.
|
|||
|
type Eigen struct {
|
|||
|
n int // The size of the factorized matrix.
|
|||
|
|
|||
|
kind EigenKind
|
|||
|
|
|||
|
values []complex128
|
|||
|
rVectors *CDense
|
|||
|
lVectors *CDense
|
|||
|
}
|
|||
|
|
|||
|
// succFact returns whether the receiver contains a successful factorization.
|
|||
|
func (e *Eigen) succFact() bool {
|
|||
|
return e.n != 0
|
|||
|
}
|
|||
|
|
|||
|
// Factorize computes the eigenvalues of the square matrix a, and optionally
|
|||
|
// the eigenvectors.
|
|||
|
//
|
|||
|
// A right eigenvalue/eigenvector combination is defined by
|
|||
|
// A * x_r = λ * x_r
|
|||
|
// where x_r is the column vector called an eigenvector, and λ is the corresponding
|
|||
|
// eigenvalue.
|
|||
|
//
|
|||
|
// Similarly, a left eigenvalue/eigenvector combination is defined by
|
|||
|
// x_l * A = λ * x_l
|
|||
|
// The eigenvalues, but not the eigenvectors, are the same for both decompositions.
|
|||
|
//
|
|||
|
// Typically eigenvectors refer to right eigenvectors.
|
|||
|
//
|
|||
|
// In all cases, Factorize computes the eigenvalues of the matrix. kind
|
|||
|
// specifies which of the eigenvectors, if any, to compute. See the EigenKind
|
|||
|
// documentation for more information.
|
|||
|
// Eigen panics if the input matrix is not square.
|
|||
|
//
|
|||
|
// Factorize returns whether the decomposition succeeded. If the decomposition
|
|||
|
// failed, methods that require a successful factorization will panic.
|
|||
|
func (e *Eigen) Factorize(a Matrix, kind EigenKind) (ok bool) {
|
|||
|
// kill previous factorization.
|
|||
|
e.n = 0
|
|||
|
e.kind = 0
|
|||
|
// Copy a because it is modified during the Lapack call.
|
|||
|
r, c := a.Dims()
|
|||
|
if r != c {
|
|||
|
panic(ErrShape)
|
|||
|
}
|
|||
|
var sd Dense
|
|||
|
sd.Clone(a)
|
|||
|
|
|||
|
left := kind&EigenLeft != 0
|
|||
|
right := kind&EigenRight != 0
|
|||
|
|
|||
|
var vl, vr Dense
|
|||
|
jobvl := lapack.LeftEVNone
|
|||
|
jobvr := lapack.RightEVNone
|
|||
|
if left {
|
|||
|
vl = *NewDense(r, r, nil)
|
|||
|
jobvl = lapack.LeftEVCompute
|
|||
|
}
|
|||
|
if right {
|
|||
|
vr = *NewDense(c, c, nil)
|
|||
|
jobvr = lapack.RightEVCompute
|
|||
|
}
|
|||
|
|
|||
|
wr := getFloats(c, false)
|
|||
|
defer putFloats(wr)
|
|||
|
wi := getFloats(c, false)
|
|||
|
defer putFloats(wi)
|
|||
|
|
|||
|
work := []float64{0}
|
|||
|
lapack64.Geev(jobvl, jobvr, sd.mat, wr, wi, vl.mat, vr.mat, work, -1)
|
|||
|
work = getFloats(int(work[0]), false)
|
|||
|
first := lapack64.Geev(jobvl, jobvr, sd.mat, wr, wi, vl.mat, vr.mat, work, len(work))
|
|||
|
putFloats(work)
|
|||
|
|
|||
|
if first != 0 {
|
|||
|
e.values = nil
|
|||
|
return false
|
|||
|
}
|
|||
|
e.n = r
|
|||
|
e.kind = kind
|
|||
|
|
|||
|
// Construct complex eigenvalues from float64 data.
|
|||
|
values := make([]complex128, r)
|
|||
|
for i, v := range wr {
|
|||
|
values[i] = complex(v, wi[i])
|
|||
|
}
|
|||
|
e.values = values
|
|||
|
|
|||
|
// Construct complex eigenvectors from float64 data.
|
|||
|
var cvl, cvr CDense
|
|||
|
if left {
|
|||
|
cvl = *NewCDense(r, r, nil)
|
|||
|
e.complexEigenTo(&cvl, &vl)
|
|||
|
e.lVectors = &cvl
|
|||
|
} else {
|
|||
|
e.lVectors = nil
|
|||
|
}
|
|||
|
if right {
|
|||
|
cvr = *NewCDense(c, c, nil)
|
|||
|
e.complexEigenTo(&cvr, &vr)
|
|||
|
e.rVectors = &cvr
|
|||
|
} else {
|
|||
|
e.rVectors = nil
|
|||
|
}
|
|||
|
return true
|
|||
|
}
|
|||
|
|
|||
|
// Kind returns the EigenKind of the decomposition. If no decomposition has been
|
|||
|
// computed, Kind returns -1.
|
|||
|
func (e *Eigen) Kind() EigenKind {
|
|||
|
if !e.succFact() {
|
|||
|
return -1
|
|||
|
}
|
|||
|
return e.kind
|
|||
|
}
|
|||
|
|
|||
|
// Values extracts the eigenvalues of the factorized matrix. If dst is
|
|||
|
// non-nil, the values are stored in-place into dst. In this case
|
|||
|
// dst must have length n, otherwise Values will panic. If dst is
|
|||
|
// nil, then a new slice will be allocated of the proper length and
|
|||
|
// filed with the eigenvalues.
|
|||
|
//
|
|||
|
// Values panics if the Eigen decomposition was not successful.
|
|||
|
func (e *Eigen) Values(dst []complex128) []complex128 {
|
|||
|
if !e.succFact() {
|
|||
|
panic(badFact)
|
|||
|
}
|
|||
|
if dst == nil {
|
|||
|
dst = make([]complex128, e.n)
|
|||
|
}
|
|||
|
if len(dst) != e.n {
|
|||
|
panic(ErrSliceLengthMismatch)
|
|||
|
}
|
|||
|
copy(dst, e.values)
|
|||
|
return dst
|
|||
|
}
|
|||
|
|
|||
|
// complexEigenTo extracts the complex eigenvectors from the real matrix d
|
|||
|
// and stores them into the complex matrix dst.
|
|||
|
//
|
|||
|
// The columns of the returned n×n dense matrix contain the eigenvectors of the
|
|||
|
// decomposition in the same order as the eigenvalues.
|
|||
|
// If the j-th eigenvalue is real, then
|
|||
|
// dst[:,j] = d[:,j],
|
|||
|
// and if it is not real, then the elements of the j-th and (j+1)-th columns of d
|
|||
|
// form complex conjugate pairs and the eigenvectors are recovered as
|
|||
|
// dst[:,j] = d[:,j] + i*d[:,j+1],
|
|||
|
// dst[:,j+1] = d[:,j] - i*d[:,j+1],
|
|||
|
// where i is the imaginary unit.
|
|||
|
func (e *Eigen) complexEigenTo(dst *CDense, d *Dense) {
|
|||
|
r, c := d.Dims()
|
|||
|
cr, cc := dst.Dims()
|
|||
|
if r != cr {
|
|||
|
panic("size mismatch")
|
|||
|
}
|
|||
|
if c != cc {
|
|||
|
panic("size mismatch")
|
|||
|
}
|
|||
|
for j := 0; j < c; j++ {
|
|||
|
if imag(e.values[j]) == 0 {
|
|||
|
for i := 0; i < r; i++ {
|
|||
|
dst.set(i, j, complex(d.at(i, j), 0))
|
|||
|
}
|
|||
|
continue
|
|||
|
}
|
|||
|
for i := 0; i < r; i++ {
|
|||
|
real := d.at(i, j)
|
|||
|
imag := d.at(i, j+1)
|
|||
|
dst.set(i, j, complex(real, imag))
|
|||
|
dst.set(i, j+1, complex(real, -imag))
|
|||
|
}
|
|||
|
j++
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// VectorsTo returns the right eigenvectors of the decomposition. VectorsTo
|
|||
|
// will panic if the right eigenvectors were not computed during the factorization,
|
|||
|
// or if the factorization was not successful.
|
|||
|
//
|
|||
|
// The computed eigenvectors are normalized to have Euclidean norm equal to 1
|
|||
|
// and largest component real.
|
|||
|
func (e *Eigen) VectorsTo(dst *CDense) *CDense {
|
|||
|
if !e.succFact() {
|
|||
|
panic(badFact)
|
|||
|
}
|
|||
|
if e.kind&EigenRight == 0 {
|
|||
|
panic(badNoVect)
|
|||
|
}
|
|||
|
if dst == nil {
|
|||
|
dst = NewCDense(e.n, e.n, nil)
|
|||
|
} else {
|
|||
|
dst.reuseAs(e.n, e.n)
|
|||
|
}
|
|||
|
dst.Copy(e.rVectors)
|
|||
|
return dst
|
|||
|
}
|
|||
|
|
|||
|
// LeftVectorsTo returns the left eigenvectors of the decomposition. LeftVectorsTo
|
|||
|
// will panic if the left eigenvectors were not computed during the factorization,
|
|||
|
// or if the factorization was not successful.
|
|||
|
//
|
|||
|
// The computed eigenvectors are normalized to have Euclidean norm equal to 1
|
|||
|
// and largest component real.
|
|||
|
func (e *Eigen) LeftVectorsTo(dst *CDense) *CDense {
|
|||
|
if !e.succFact() {
|
|||
|
panic(badFact)
|
|||
|
}
|
|||
|
if e.kind&EigenLeft == 0 {
|
|||
|
panic(badNoVect)
|
|||
|
}
|
|||
|
if dst == nil {
|
|||
|
dst = NewCDense(e.n, e.n, nil)
|
|||
|
} else {
|
|||
|
dst.reuseAs(e.n, e.n)
|
|||
|
}
|
|||
|
dst.Copy(e.lVectors)
|
|||
|
return dst
|
|||
|
}
|