mirror of https://github.com/k3s-io/k3s
261 lines
7.2 KiB
Go
261 lines
7.2 KiB
Go
|
// Copyright ©2013 The Gonum Authors. All rights reserved.
|
|||
|
// Use of this source code is governed by a BSD-style
|
|||
|
// license that can be found in the LICENSE file.
|
|||
|
|
|||
|
package mat
|
|||
|
|
|||
|
import (
|
|||
|
"math"
|
|||
|
|
|||
|
"gonum.org/v1/gonum/blas"
|
|||
|
"gonum.org/v1/gonum/blas/blas64"
|
|||
|
"gonum.org/v1/gonum/lapack"
|
|||
|
"gonum.org/v1/gonum/lapack/lapack64"
|
|||
|
)
|
|||
|
|
|||
|
const badQR = "mat: invalid QR factorization"
|
|||
|
|
|||
|
// QR is a type for creating and using the QR factorization of a matrix.
|
|||
|
type QR struct {
|
|||
|
qr *Dense
|
|||
|
tau []float64
|
|||
|
cond float64
|
|||
|
}
|
|||
|
|
|||
|
func (qr *QR) updateCond(norm lapack.MatrixNorm) {
|
|||
|
// Since A = Q*R, and Q is orthogonal, we get for the condition number κ
|
|||
|
// κ(A) := |A| |A^-1| = |Q*R| |(Q*R)^-1| = |R| |R^-1 * Q^T|
|
|||
|
// = |R| |R^-1| = κ(R),
|
|||
|
// where we used that fact that Q^-1 = Q^T. However, this assumes that
|
|||
|
// the matrix norm is invariant under orthogonal transformations which
|
|||
|
// is not the case for CondNorm. Hopefully the error is negligible: κ
|
|||
|
// is only a qualitative measure anyway.
|
|||
|
n := qr.qr.mat.Cols
|
|||
|
work := getFloats(3*n, false)
|
|||
|
iwork := getInts(n, false)
|
|||
|
r := qr.qr.asTriDense(n, blas.NonUnit, blas.Upper)
|
|||
|
v := lapack64.Trcon(norm, r.mat, work, iwork)
|
|||
|
putFloats(work)
|
|||
|
putInts(iwork)
|
|||
|
qr.cond = 1 / v
|
|||
|
}
|
|||
|
|
|||
|
// Factorize computes the QR factorization of an m×n matrix a where m >= n. The QR
|
|||
|
// factorization always exists even if A is singular.
|
|||
|
//
|
|||
|
// The QR decomposition is a factorization of the matrix A such that A = Q * R.
|
|||
|
// The matrix Q is an orthonormal m×m matrix, and R is an m×n upper triangular matrix.
|
|||
|
// Q and R can be extracted using the QTo and RTo methods.
|
|||
|
func (qr *QR) Factorize(a Matrix) {
|
|||
|
qr.factorize(a, CondNorm)
|
|||
|
}
|
|||
|
|
|||
|
func (qr *QR) factorize(a Matrix, norm lapack.MatrixNorm) {
|
|||
|
m, n := a.Dims()
|
|||
|
if m < n {
|
|||
|
panic(ErrShape)
|
|||
|
}
|
|||
|
k := min(m, n)
|
|||
|
if qr.qr == nil {
|
|||
|
qr.qr = &Dense{}
|
|||
|
}
|
|||
|
qr.qr.Clone(a)
|
|||
|
work := []float64{0}
|
|||
|
qr.tau = make([]float64, k)
|
|||
|
lapack64.Geqrf(qr.qr.mat, qr.tau, work, -1)
|
|||
|
|
|||
|
work = getFloats(int(work[0]), false)
|
|||
|
lapack64.Geqrf(qr.qr.mat, qr.tau, work, len(work))
|
|||
|
putFloats(work)
|
|||
|
qr.updateCond(norm)
|
|||
|
}
|
|||
|
|
|||
|
// isValid returns whether the receiver contains a factorization.
|
|||
|
func (qr *QR) isValid() bool {
|
|||
|
return qr.qr != nil && !qr.qr.IsZero()
|
|||
|
}
|
|||
|
|
|||
|
// Cond returns the condition number for the factorized matrix.
|
|||
|
// Cond will panic if the receiver does not contain a factorization.
|
|||
|
func (qr *QR) Cond() float64 {
|
|||
|
if !qr.isValid() {
|
|||
|
panic(badQR)
|
|||
|
}
|
|||
|
return qr.cond
|
|||
|
}
|
|||
|
|
|||
|
// TODO(btracey): Add in the "Reduced" forms for extracting the n×n orthogonal
|
|||
|
// and upper triangular matrices.
|
|||
|
|
|||
|
// RTo extracts the m×n upper trapezoidal matrix from a QR decomposition.
|
|||
|
// If dst is nil, a new matrix is allocated. The resulting dst matrix is returned.
|
|||
|
// RTo will panic if the receiver does not contain a factorization.
|
|||
|
func (qr *QR) RTo(dst *Dense) *Dense {
|
|||
|
if !qr.isValid() {
|
|||
|
panic(badQR)
|
|||
|
}
|
|||
|
|
|||
|
r, c := qr.qr.Dims()
|
|||
|
if dst == nil {
|
|||
|
dst = NewDense(r, c, nil)
|
|||
|
} else {
|
|||
|
dst.reuseAs(r, c)
|
|||
|
}
|
|||
|
|
|||
|
// Disguise the QR as an upper triangular
|
|||
|
t := &TriDense{
|
|||
|
mat: blas64.Triangular{
|
|||
|
N: c,
|
|||
|
Stride: qr.qr.mat.Stride,
|
|||
|
Data: qr.qr.mat.Data,
|
|||
|
Uplo: blas.Upper,
|
|||
|
Diag: blas.NonUnit,
|
|||
|
},
|
|||
|
cap: qr.qr.capCols,
|
|||
|
}
|
|||
|
dst.Copy(t)
|
|||
|
|
|||
|
// Zero below the triangular.
|
|||
|
for i := r; i < c; i++ {
|
|||
|
zero(dst.mat.Data[i*dst.mat.Stride : i*dst.mat.Stride+c])
|
|||
|
}
|
|||
|
|
|||
|
return dst
|
|||
|
}
|
|||
|
|
|||
|
// QTo extracts the m×m orthonormal matrix Q from a QR decomposition.
|
|||
|
// If dst is nil, a new matrix is allocated. The resulting Q matrix is returned.
|
|||
|
// QTo will panic if the receiver does not contain a factorization.
|
|||
|
func (qr *QR) QTo(dst *Dense) *Dense {
|
|||
|
if !qr.isValid() {
|
|||
|
panic(badQR)
|
|||
|
}
|
|||
|
|
|||
|
r, _ := qr.qr.Dims()
|
|||
|
if dst == nil {
|
|||
|
dst = NewDense(r, r, nil)
|
|||
|
} else {
|
|||
|
dst.reuseAsZeroed(r, r)
|
|||
|
}
|
|||
|
|
|||
|
// Set Q = I.
|
|||
|
for i := 0; i < r*r; i += r + 1 {
|
|||
|
dst.mat.Data[i] = 1
|
|||
|
}
|
|||
|
|
|||
|
// Construct Q from the elementary reflectors.
|
|||
|
work := []float64{0}
|
|||
|
lapack64.Ormqr(blas.Left, blas.NoTrans, qr.qr.mat, qr.tau, dst.mat, work, -1)
|
|||
|
work = getFloats(int(work[0]), false)
|
|||
|
lapack64.Ormqr(blas.Left, blas.NoTrans, qr.qr.mat, qr.tau, dst.mat, work, len(work))
|
|||
|
putFloats(work)
|
|||
|
|
|||
|
return dst
|
|||
|
}
|
|||
|
|
|||
|
// SolveTo finds a minimum-norm solution to a system of linear equations defined
|
|||
|
// by the matrices A and b, where A is an m×n matrix represented in its QR factorized
|
|||
|
// form. If A is singular or near-singular a Condition error is returned.
|
|||
|
// See the documentation for Condition for more information.
|
|||
|
//
|
|||
|
// The minimization problem solved depends on the input parameters.
|
|||
|
// If trans == false, find X such that ||A*X - B||_2 is minimized.
|
|||
|
// If trans == true, find the minimum norm solution of A^T * X = B.
|
|||
|
// The solution matrix, X, is stored in place into dst.
|
|||
|
// SolveTo will panic if the receiver does not contain a factorization.
|
|||
|
func (qr *QR) SolveTo(dst *Dense, trans bool, b Matrix) error {
|
|||
|
if !qr.isValid() {
|
|||
|
panic(badQR)
|
|||
|
}
|
|||
|
|
|||
|
r, c := qr.qr.Dims()
|
|||
|
br, bc := b.Dims()
|
|||
|
|
|||
|
// The QR solve algorithm stores the result in-place into the right hand side.
|
|||
|
// The storage for the answer must be large enough to hold both b and x.
|
|||
|
// However, this method's receiver must be the size of x. Copy b, and then
|
|||
|
// copy the result into m at the end.
|
|||
|
if trans {
|
|||
|
if c != br {
|
|||
|
panic(ErrShape)
|
|||
|
}
|
|||
|
dst.reuseAs(r, bc)
|
|||
|
} else {
|
|||
|
if r != br {
|
|||
|
panic(ErrShape)
|
|||
|
}
|
|||
|
dst.reuseAs(c, bc)
|
|||
|
}
|
|||
|
// Do not need to worry about overlap between m and b because x has its own
|
|||
|
// independent storage.
|
|||
|
w := getWorkspace(max(r, c), bc, false)
|
|||
|
w.Copy(b)
|
|||
|
t := qr.qr.asTriDense(qr.qr.mat.Cols, blas.NonUnit, blas.Upper).mat
|
|||
|
if trans {
|
|||
|
ok := lapack64.Trtrs(blas.Trans, t, w.mat)
|
|||
|
if !ok {
|
|||
|
return Condition(math.Inf(1))
|
|||
|
}
|
|||
|
for i := c; i < r; i++ {
|
|||
|
zero(w.mat.Data[i*w.mat.Stride : i*w.mat.Stride+bc])
|
|||
|
}
|
|||
|
work := []float64{0}
|
|||
|
lapack64.Ormqr(blas.Left, blas.NoTrans, qr.qr.mat, qr.tau, w.mat, work, -1)
|
|||
|
work = getFloats(int(work[0]), false)
|
|||
|
lapack64.Ormqr(blas.Left, blas.NoTrans, qr.qr.mat, qr.tau, w.mat, work, len(work))
|
|||
|
putFloats(work)
|
|||
|
} else {
|
|||
|
work := []float64{0}
|
|||
|
lapack64.Ormqr(blas.Left, blas.Trans, qr.qr.mat, qr.tau, w.mat, work, -1)
|
|||
|
work = getFloats(int(work[0]), false)
|
|||
|
lapack64.Ormqr(blas.Left, blas.Trans, qr.qr.mat, qr.tau, w.mat, work, len(work))
|
|||
|
putFloats(work)
|
|||
|
|
|||
|
ok := lapack64.Trtrs(blas.NoTrans, t, w.mat)
|
|||
|
if !ok {
|
|||
|
return Condition(math.Inf(1))
|
|||
|
}
|
|||
|
}
|
|||
|
// X was set above to be the correct size for the result.
|
|||
|
dst.Copy(w)
|
|||
|
putWorkspace(w)
|
|||
|
if qr.cond > ConditionTolerance {
|
|||
|
return Condition(qr.cond)
|
|||
|
}
|
|||
|
return nil
|
|||
|
}
|
|||
|
|
|||
|
// SolveVecTo finds a minimum-norm solution to a system of linear equations,
|
|||
|
// Ax = b.
|
|||
|
// See QR.SolveTo for the full documentation.
|
|||
|
// SolveVecTo will panic if the receiver does not contain a factorization.
|
|||
|
func (qr *QR) SolveVecTo(dst *VecDense, trans bool, b Vector) error {
|
|||
|
if !qr.isValid() {
|
|||
|
panic(badQR)
|
|||
|
}
|
|||
|
|
|||
|
r, c := qr.qr.Dims()
|
|||
|
if _, bc := b.Dims(); bc != 1 {
|
|||
|
panic(ErrShape)
|
|||
|
}
|
|||
|
|
|||
|
// The Solve implementation is non-trivial, so rather than duplicate the code,
|
|||
|
// instead recast the VecDenses as Dense and call the matrix code.
|
|||
|
bm := Matrix(b)
|
|||
|
if rv, ok := b.(RawVectorer); ok {
|
|||
|
bmat := rv.RawVector()
|
|||
|
if dst != b {
|
|||
|
dst.checkOverlap(bmat)
|
|||
|
}
|
|||
|
b := VecDense{mat: bmat}
|
|||
|
bm = b.asDense()
|
|||
|
}
|
|||
|
if trans {
|
|||
|
dst.reuseAs(r)
|
|||
|
} else {
|
|||
|
dst.reuseAs(c)
|
|||
|
}
|
|||
|
return qr.SolveTo(dst.asDense(), trans, bm)
|
|||
|
|
|||
|
}
|