mirror of https://github.com/k3s-io/k3s
947 lines
24 KiB
Go
947 lines
24 KiB
Go
|
// Copyright ©2013 The Gonum Authors. All rights reserved.
|
||
|
// Use of this source code is governed by a BSD-style
|
||
|
// license that can be found in the LICENSE file.
|
||
|
|
||
|
package mat
|
||
|
|
||
|
import (
|
||
|
"math"
|
||
|
|
||
|
"gonum.org/v1/gonum/blas"
|
||
|
"gonum.org/v1/gonum/blas/blas64"
|
||
|
"gonum.org/v1/gonum/floats"
|
||
|
"gonum.org/v1/gonum/lapack"
|
||
|
"gonum.org/v1/gonum/lapack/lapack64"
|
||
|
)
|
||
|
|
||
|
// Matrix is the basic matrix interface type.
|
||
|
type Matrix interface {
|
||
|
// Dims returns the dimensions of a Matrix.
|
||
|
Dims() (r, c int)
|
||
|
|
||
|
// At returns the value of a matrix element at row i, column j.
|
||
|
// It will panic if i or j are out of bounds for the matrix.
|
||
|
At(i, j int) float64
|
||
|
|
||
|
// T returns the transpose of the Matrix. Whether T returns a copy of the
|
||
|
// underlying data is implementation dependent.
|
||
|
// This method may be implemented using the Transpose type, which
|
||
|
// provides an implicit matrix transpose.
|
||
|
T() Matrix
|
||
|
}
|
||
|
|
||
|
var (
|
||
|
_ Matrix = Transpose{}
|
||
|
_ Untransposer = Transpose{}
|
||
|
)
|
||
|
|
||
|
// Transpose is a type for performing an implicit matrix transpose. It implements
|
||
|
// the Matrix interface, returning values from the transpose of the matrix within.
|
||
|
type Transpose struct {
|
||
|
Matrix Matrix
|
||
|
}
|
||
|
|
||
|
// At returns the value of the element at row i and column j of the transposed
|
||
|
// matrix, that is, row j and column i of the Matrix field.
|
||
|
func (t Transpose) At(i, j int) float64 {
|
||
|
return t.Matrix.At(j, i)
|
||
|
}
|
||
|
|
||
|
// Dims returns the dimensions of the transposed matrix. The number of rows returned
|
||
|
// is the number of columns in the Matrix field, and the number of columns is
|
||
|
// the number of rows in the Matrix field.
|
||
|
func (t Transpose) Dims() (r, c int) {
|
||
|
c, r = t.Matrix.Dims()
|
||
|
return r, c
|
||
|
}
|
||
|
|
||
|
// T performs an implicit transpose by returning the Matrix field.
|
||
|
func (t Transpose) T() Matrix {
|
||
|
return t.Matrix
|
||
|
}
|
||
|
|
||
|
// Untranspose returns the Matrix field.
|
||
|
func (t Transpose) Untranspose() Matrix {
|
||
|
return t.Matrix
|
||
|
}
|
||
|
|
||
|
// Untransposer is a type that can undo an implicit transpose.
|
||
|
type Untransposer interface {
|
||
|
// Note: This interface is needed to unify all of the Transpose types. In
|
||
|
// the mat methods, we need to test if the Matrix has been implicitly
|
||
|
// transposed. If this is checked by testing for the specific Transpose type
|
||
|
// then the behavior will be different if the user uses T() or TTri() for a
|
||
|
// triangular matrix.
|
||
|
|
||
|
// Untranspose returns the underlying Matrix stored for the implicit transpose.
|
||
|
Untranspose() Matrix
|
||
|
}
|
||
|
|
||
|
// UntransposeBander is a type that can undo an implicit band transpose.
|
||
|
type UntransposeBander interface {
|
||
|
// Untranspose returns the underlying Banded stored for the implicit transpose.
|
||
|
UntransposeBand() Banded
|
||
|
}
|
||
|
|
||
|
// UntransposeTrier is a type that can undo an implicit triangular transpose.
|
||
|
type UntransposeTrier interface {
|
||
|
// Untranspose returns the underlying Triangular stored for the implicit transpose.
|
||
|
UntransposeTri() Triangular
|
||
|
}
|
||
|
|
||
|
// UntransposeTriBander is a type that can undo an implicit triangular banded
|
||
|
// transpose.
|
||
|
type UntransposeTriBander interface {
|
||
|
// Untranspose returns the underlying Triangular stored for the implicit transpose.
|
||
|
UntransposeTriBand() TriBanded
|
||
|
}
|
||
|
|
||
|
// Mutable is a matrix interface type that allows elements to be altered.
|
||
|
type Mutable interface {
|
||
|
// Set alters the matrix element at row i, column j to v.
|
||
|
// It will panic if i or j are out of bounds for the matrix.
|
||
|
Set(i, j int, v float64)
|
||
|
|
||
|
Matrix
|
||
|
}
|
||
|
|
||
|
// A RowViewer can return a Vector reflecting a row that is backed by the matrix
|
||
|
// data. The Vector returned will have length equal to the number of columns.
|
||
|
type RowViewer interface {
|
||
|
RowView(i int) Vector
|
||
|
}
|
||
|
|
||
|
// A RawRowViewer can return a slice of float64 reflecting a row that is backed by the matrix
|
||
|
// data.
|
||
|
type RawRowViewer interface {
|
||
|
RawRowView(i int) []float64
|
||
|
}
|
||
|
|
||
|
// A ColViewer can return a Vector reflecting a column that is backed by the matrix
|
||
|
// data. The Vector returned will have length equal to the number of rows.
|
||
|
type ColViewer interface {
|
||
|
ColView(j int) Vector
|
||
|
}
|
||
|
|
||
|
// A RawColViewer can return a slice of float64 reflecting a column that is backed by the matrix
|
||
|
// data.
|
||
|
type RawColViewer interface {
|
||
|
RawColView(j int) []float64
|
||
|
}
|
||
|
|
||
|
// A Cloner can make a copy of a into the receiver, overwriting the previous value of the
|
||
|
// receiver. The clone operation does not make any restriction on shape and will not cause
|
||
|
// shadowing.
|
||
|
type Cloner interface {
|
||
|
Clone(a Matrix)
|
||
|
}
|
||
|
|
||
|
// A Reseter can reset the matrix so that it can be reused as the receiver of a dimensionally
|
||
|
// restricted operation. This is commonly used when the matrix is being used as a workspace
|
||
|
// or temporary matrix.
|
||
|
//
|
||
|
// If the matrix is a view, using the reset matrix may result in data corruption in elements
|
||
|
// outside the view.
|
||
|
type Reseter interface {
|
||
|
Reset()
|
||
|
}
|
||
|
|
||
|
// A Copier can make a copy of elements of a into the receiver. The submatrix copied
|
||
|
// starts at row and column 0 and has dimensions equal to the minimum dimensions of
|
||
|
// the two matrices. The number of row and columns copied is returned.
|
||
|
// Copy will copy from a source that aliases the receiver unless the source is transposed;
|
||
|
// an aliasing transpose copy will panic with the exception for a special case when
|
||
|
// the source data has a unitary increment or stride.
|
||
|
type Copier interface {
|
||
|
Copy(a Matrix) (r, c int)
|
||
|
}
|
||
|
|
||
|
// A Grower can grow the size of the represented matrix by the given number of rows and columns.
|
||
|
// Growing beyond the size given by the Caps method will result in the allocation of a new
|
||
|
// matrix and copying of the elements. If Grow is called with negative increments it will
|
||
|
// panic with ErrIndexOutOfRange.
|
||
|
type Grower interface {
|
||
|
Caps() (r, c int)
|
||
|
Grow(r, c int) Matrix
|
||
|
}
|
||
|
|
||
|
// A BandWidther represents a banded matrix and can return the left and right half-bandwidths, k1 and
|
||
|
// k2.
|
||
|
type BandWidther interface {
|
||
|
BandWidth() (k1, k2 int)
|
||
|
}
|
||
|
|
||
|
// A RawMatrixSetter can set the underlying blas64.General used by the receiver. There is no restriction
|
||
|
// on the shape of the receiver. Changes to the receiver's elements will be reflected in the blas64.General.Data.
|
||
|
type RawMatrixSetter interface {
|
||
|
SetRawMatrix(a blas64.General)
|
||
|
}
|
||
|
|
||
|
// A RawMatrixer can return a blas64.General representation of the receiver. Changes to the blas64.General.Data
|
||
|
// slice will be reflected in the original matrix, changes to the Rows, Cols and Stride fields will not.
|
||
|
type RawMatrixer interface {
|
||
|
RawMatrix() blas64.General
|
||
|
}
|
||
|
|
||
|
// A RawVectorer can return a blas64.Vector representation of the receiver. Changes to the blas64.Vector.Data
|
||
|
// slice will be reflected in the original matrix, changes to the Inc field will not.
|
||
|
type RawVectorer interface {
|
||
|
RawVector() blas64.Vector
|
||
|
}
|
||
|
|
||
|
// A NonZeroDoer can call a function for each non-zero element of the receiver.
|
||
|
// The parameters of the function are the element indices and its value.
|
||
|
type NonZeroDoer interface {
|
||
|
DoNonZero(func(i, j int, v float64))
|
||
|
}
|
||
|
|
||
|
// A RowNonZeroDoer can call a function for each non-zero element of a row of the receiver.
|
||
|
// The parameters of the function are the element indices and its value.
|
||
|
type RowNonZeroDoer interface {
|
||
|
DoRowNonZero(i int, fn func(i, j int, v float64))
|
||
|
}
|
||
|
|
||
|
// A ColNonZeroDoer can call a function for each non-zero element of a column of the receiver.
|
||
|
// The parameters of the function are the element indices and its value.
|
||
|
type ColNonZeroDoer interface {
|
||
|
DoColNonZero(j int, fn func(i, j int, v float64))
|
||
|
}
|
||
|
|
||
|
// untranspose untransposes a matrix if applicable. If a is an Untransposer, then
|
||
|
// untranspose returns the underlying matrix and true. If it is not, then it returns
|
||
|
// the input matrix and false.
|
||
|
func untranspose(a Matrix) (Matrix, bool) {
|
||
|
if ut, ok := a.(Untransposer); ok {
|
||
|
return ut.Untranspose(), true
|
||
|
}
|
||
|
return a, false
|
||
|
}
|
||
|
|
||
|
// untransposeExtract returns an untransposed matrix in a built-in matrix type.
|
||
|
//
|
||
|
// The untransposed matrix is returned unaltered if it is a built-in matrix type.
|
||
|
// Otherwise, if it implements a Raw method, an appropriate built-in type value
|
||
|
// is returned holding the raw matrix value of the input. If neither of these
|
||
|
// is possible, the untransposed matrix is returned.
|
||
|
func untransposeExtract(a Matrix) (Matrix, bool) {
|
||
|
ut, trans := untranspose(a)
|
||
|
switch m := ut.(type) {
|
||
|
case *DiagDense, *SymBandDense, *TriBandDense, *BandDense, *TriDense, *SymDense, *Dense:
|
||
|
return m, trans
|
||
|
// TODO(btracey): Add here if we ever have an equivalent of RawDiagDense.
|
||
|
case RawSymBander:
|
||
|
rsb := m.RawSymBand()
|
||
|
if rsb.Uplo != blas.Upper {
|
||
|
return ut, trans
|
||
|
}
|
||
|
var sb SymBandDense
|
||
|
sb.SetRawSymBand(rsb)
|
||
|
return &sb, trans
|
||
|
case RawTriBander:
|
||
|
rtb := m.RawTriBand()
|
||
|
if rtb.Diag == blas.Unit {
|
||
|
return ut, trans
|
||
|
}
|
||
|
var tb TriBandDense
|
||
|
tb.SetRawTriBand(rtb)
|
||
|
return &tb, trans
|
||
|
case RawBander:
|
||
|
var b BandDense
|
||
|
b.SetRawBand(m.RawBand())
|
||
|
return &b, trans
|
||
|
case RawTriangular:
|
||
|
rt := m.RawTriangular()
|
||
|
if rt.Diag == blas.Unit {
|
||
|
return ut, trans
|
||
|
}
|
||
|
var t TriDense
|
||
|
t.SetRawTriangular(rt)
|
||
|
return &t, trans
|
||
|
case RawSymmetricer:
|
||
|
rs := m.RawSymmetric()
|
||
|
if rs.Uplo != blas.Upper {
|
||
|
return ut, trans
|
||
|
}
|
||
|
var s SymDense
|
||
|
s.SetRawSymmetric(rs)
|
||
|
return &s, trans
|
||
|
case RawMatrixer:
|
||
|
var d Dense
|
||
|
d.SetRawMatrix(m.RawMatrix())
|
||
|
return &d, trans
|
||
|
default:
|
||
|
return ut, trans
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// TODO(btracey): Consider adding CopyCol/CopyRow if the behavior seems useful.
|
||
|
// TODO(btracey): Add in fast paths to Row/Col for the other concrete types
|
||
|
// (TriDense, etc.) as well as relevant interfaces (RowColer, RawRowViewer, etc.)
|
||
|
|
||
|
// Col copies the elements in the jth column of the matrix into the slice dst.
|
||
|
// The length of the provided slice must equal the number of rows, unless the
|
||
|
// slice is nil in which case a new slice is first allocated.
|
||
|
func Col(dst []float64, j int, a Matrix) []float64 {
|
||
|
r, c := a.Dims()
|
||
|
if j < 0 || j >= c {
|
||
|
panic(ErrColAccess)
|
||
|
}
|
||
|
if dst == nil {
|
||
|
dst = make([]float64, r)
|
||
|
} else {
|
||
|
if len(dst) != r {
|
||
|
panic(ErrColLength)
|
||
|
}
|
||
|
}
|
||
|
aU, aTrans := untranspose(a)
|
||
|
if rm, ok := aU.(RawMatrixer); ok {
|
||
|
m := rm.RawMatrix()
|
||
|
if aTrans {
|
||
|
copy(dst, m.Data[j*m.Stride:j*m.Stride+m.Cols])
|
||
|
return dst
|
||
|
}
|
||
|
blas64.Copy(blas64.Vector{N: r, Inc: m.Stride, Data: m.Data[j:]},
|
||
|
blas64.Vector{N: r, Inc: 1, Data: dst},
|
||
|
)
|
||
|
return dst
|
||
|
}
|
||
|
for i := 0; i < r; i++ {
|
||
|
dst[i] = a.At(i, j)
|
||
|
}
|
||
|
return dst
|
||
|
}
|
||
|
|
||
|
// Row copies the elements in the ith row of the matrix into the slice dst.
|
||
|
// The length of the provided slice must equal the number of columns, unless the
|
||
|
// slice is nil in which case a new slice is first allocated.
|
||
|
func Row(dst []float64, i int, a Matrix) []float64 {
|
||
|
r, c := a.Dims()
|
||
|
if i < 0 || i >= r {
|
||
|
panic(ErrColAccess)
|
||
|
}
|
||
|
if dst == nil {
|
||
|
dst = make([]float64, c)
|
||
|
} else {
|
||
|
if len(dst) != c {
|
||
|
panic(ErrRowLength)
|
||
|
}
|
||
|
}
|
||
|
aU, aTrans := untranspose(a)
|
||
|
if rm, ok := aU.(RawMatrixer); ok {
|
||
|
m := rm.RawMatrix()
|
||
|
if aTrans {
|
||
|
blas64.Copy(blas64.Vector{N: c, Inc: m.Stride, Data: m.Data[i:]},
|
||
|
blas64.Vector{N: c, Inc: 1, Data: dst},
|
||
|
)
|
||
|
return dst
|
||
|
}
|
||
|
copy(dst, m.Data[i*m.Stride:i*m.Stride+m.Cols])
|
||
|
return dst
|
||
|
}
|
||
|
for j := 0; j < c; j++ {
|
||
|
dst[j] = a.At(i, j)
|
||
|
}
|
||
|
return dst
|
||
|
}
|
||
|
|
||
|
// Cond returns the condition number of the given matrix under the given norm.
|
||
|
// The condition number must be based on the 1-norm, 2-norm or ∞-norm.
|
||
|
// Cond will panic with matrix.ErrShape if the matrix has zero size.
|
||
|
//
|
||
|
// BUG(btracey): The computation of the 1-norm and ∞-norm for non-square matrices
|
||
|
// is innacurate, although is typically the right order of magnitude. See
|
||
|
// https://github.com/xianyi/OpenBLAS/issues/636. While the value returned will
|
||
|
// change with the resolution of this bug, the result from Cond will match the
|
||
|
// condition number used internally.
|
||
|
func Cond(a Matrix, norm float64) float64 {
|
||
|
m, n := a.Dims()
|
||
|
if m == 0 || n == 0 {
|
||
|
panic(ErrShape)
|
||
|
}
|
||
|
var lnorm lapack.MatrixNorm
|
||
|
switch norm {
|
||
|
default:
|
||
|
panic("mat: bad norm value")
|
||
|
case 1:
|
||
|
lnorm = lapack.MaxColumnSum
|
||
|
case 2:
|
||
|
var svd SVD
|
||
|
ok := svd.Factorize(a, SVDNone)
|
||
|
if !ok {
|
||
|
return math.Inf(1)
|
||
|
}
|
||
|
return svd.Cond()
|
||
|
case math.Inf(1):
|
||
|
lnorm = lapack.MaxRowSum
|
||
|
}
|
||
|
|
||
|
if m == n {
|
||
|
// Use the LU decomposition to compute the condition number.
|
||
|
var lu LU
|
||
|
lu.factorize(a, lnorm)
|
||
|
return lu.Cond()
|
||
|
}
|
||
|
if m > n {
|
||
|
// Use the QR factorization to compute the condition number.
|
||
|
var qr QR
|
||
|
qr.factorize(a, lnorm)
|
||
|
return qr.Cond()
|
||
|
}
|
||
|
// Use the LQ factorization to compute the condition number.
|
||
|
var lq LQ
|
||
|
lq.factorize(a, lnorm)
|
||
|
return lq.Cond()
|
||
|
}
|
||
|
|
||
|
// Det returns the determinant of the matrix a. In many expressions using LogDet
|
||
|
// will be more numerically stable.
|
||
|
func Det(a Matrix) float64 {
|
||
|
det, sign := LogDet(a)
|
||
|
return math.Exp(det) * sign
|
||
|
}
|
||
|
|
||
|
// Dot returns the sum of the element-wise product of a and b.
|
||
|
// Dot panics if the matrix sizes are unequal.
|
||
|
func Dot(a, b Vector) float64 {
|
||
|
la := a.Len()
|
||
|
lb := b.Len()
|
||
|
if la != lb {
|
||
|
panic(ErrShape)
|
||
|
}
|
||
|
if arv, ok := a.(RawVectorer); ok {
|
||
|
if brv, ok := b.(RawVectorer); ok {
|
||
|
return blas64.Dot(arv.RawVector(), brv.RawVector())
|
||
|
}
|
||
|
}
|
||
|
var sum float64
|
||
|
for i := 0; i < la; i++ {
|
||
|
sum += a.At(i, 0) * b.At(i, 0)
|
||
|
}
|
||
|
return sum
|
||
|
}
|
||
|
|
||
|
// Equal returns whether the matrices a and b have the same size
|
||
|
// and are element-wise equal.
|
||
|
func Equal(a, b Matrix) bool {
|
||
|
ar, ac := a.Dims()
|
||
|
br, bc := b.Dims()
|
||
|
if ar != br || ac != bc {
|
||
|
return false
|
||
|
}
|
||
|
aU, aTrans := untranspose(a)
|
||
|
bU, bTrans := untranspose(b)
|
||
|
if rma, ok := aU.(RawMatrixer); ok {
|
||
|
if rmb, ok := bU.(RawMatrixer); ok {
|
||
|
ra := rma.RawMatrix()
|
||
|
rb := rmb.RawMatrix()
|
||
|
if aTrans == bTrans {
|
||
|
for i := 0; i < ra.Rows; i++ {
|
||
|
for j := 0; j < ra.Cols; j++ {
|
||
|
if ra.Data[i*ra.Stride+j] != rb.Data[i*rb.Stride+j] {
|
||
|
return false
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return true
|
||
|
}
|
||
|
for i := 0; i < ra.Rows; i++ {
|
||
|
for j := 0; j < ra.Cols; j++ {
|
||
|
if ra.Data[i*ra.Stride+j] != rb.Data[j*rb.Stride+i] {
|
||
|
return false
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return true
|
||
|
}
|
||
|
}
|
||
|
if rma, ok := aU.(RawSymmetricer); ok {
|
||
|
if rmb, ok := bU.(RawSymmetricer); ok {
|
||
|
ra := rma.RawSymmetric()
|
||
|
rb := rmb.RawSymmetric()
|
||
|
// Symmetric matrices are always upper and equal to their transpose.
|
||
|
for i := 0; i < ra.N; i++ {
|
||
|
for j := i; j < ra.N; j++ {
|
||
|
if ra.Data[i*ra.Stride+j] != rb.Data[i*rb.Stride+j] {
|
||
|
return false
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return true
|
||
|
}
|
||
|
}
|
||
|
if ra, ok := aU.(*VecDense); ok {
|
||
|
if rb, ok := bU.(*VecDense); ok {
|
||
|
// If the raw vectors are the same length they must either both be
|
||
|
// transposed or both not transposed (or have length 1).
|
||
|
for i := 0; i < ra.mat.N; i++ {
|
||
|
if ra.mat.Data[i*ra.mat.Inc] != rb.mat.Data[i*rb.mat.Inc] {
|
||
|
return false
|
||
|
}
|
||
|
}
|
||
|
return true
|
||
|
}
|
||
|
}
|
||
|
for i := 0; i < ar; i++ {
|
||
|
for j := 0; j < ac; j++ {
|
||
|
if a.At(i, j) != b.At(i, j) {
|
||
|
return false
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return true
|
||
|
}
|
||
|
|
||
|
// EqualApprox returns whether the matrices a and b have the same size and contain all equal
|
||
|
// elements with tolerance for element-wise equality specified by epsilon. Matrices
|
||
|
// with non-equal shapes are not equal.
|
||
|
func EqualApprox(a, b Matrix, epsilon float64) bool {
|
||
|
ar, ac := a.Dims()
|
||
|
br, bc := b.Dims()
|
||
|
if ar != br || ac != bc {
|
||
|
return false
|
||
|
}
|
||
|
aU, aTrans := untranspose(a)
|
||
|
bU, bTrans := untranspose(b)
|
||
|
if rma, ok := aU.(RawMatrixer); ok {
|
||
|
if rmb, ok := bU.(RawMatrixer); ok {
|
||
|
ra := rma.RawMatrix()
|
||
|
rb := rmb.RawMatrix()
|
||
|
if aTrans == bTrans {
|
||
|
for i := 0; i < ra.Rows; i++ {
|
||
|
for j := 0; j < ra.Cols; j++ {
|
||
|
if !floats.EqualWithinAbsOrRel(ra.Data[i*ra.Stride+j], rb.Data[i*rb.Stride+j], epsilon, epsilon) {
|
||
|
return false
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return true
|
||
|
}
|
||
|
for i := 0; i < ra.Rows; i++ {
|
||
|
for j := 0; j < ra.Cols; j++ {
|
||
|
if !floats.EqualWithinAbsOrRel(ra.Data[i*ra.Stride+j], rb.Data[j*rb.Stride+i], epsilon, epsilon) {
|
||
|
return false
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return true
|
||
|
}
|
||
|
}
|
||
|
if rma, ok := aU.(RawSymmetricer); ok {
|
||
|
if rmb, ok := bU.(RawSymmetricer); ok {
|
||
|
ra := rma.RawSymmetric()
|
||
|
rb := rmb.RawSymmetric()
|
||
|
// Symmetric matrices are always upper and equal to their transpose.
|
||
|
for i := 0; i < ra.N; i++ {
|
||
|
for j := i; j < ra.N; j++ {
|
||
|
if !floats.EqualWithinAbsOrRel(ra.Data[i*ra.Stride+j], rb.Data[i*rb.Stride+j], epsilon, epsilon) {
|
||
|
return false
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return true
|
||
|
}
|
||
|
}
|
||
|
if ra, ok := aU.(*VecDense); ok {
|
||
|
if rb, ok := bU.(*VecDense); ok {
|
||
|
// If the raw vectors are the same length they must either both be
|
||
|
// transposed or both not transposed (or have length 1).
|
||
|
for i := 0; i < ra.mat.N; i++ {
|
||
|
if !floats.EqualWithinAbsOrRel(ra.mat.Data[i*ra.mat.Inc], rb.mat.Data[i*rb.mat.Inc], epsilon, epsilon) {
|
||
|
return false
|
||
|
}
|
||
|
}
|
||
|
return true
|
||
|
}
|
||
|
}
|
||
|
for i := 0; i < ar; i++ {
|
||
|
for j := 0; j < ac; j++ {
|
||
|
if !floats.EqualWithinAbsOrRel(a.At(i, j), b.At(i, j), epsilon, epsilon) {
|
||
|
return false
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return true
|
||
|
}
|
||
|
|
||
|
// LogDet returns the log of the determinant and the sign of the determinant
|
||
|
// for the matrix that has been factorized. Numerical stability in product and
|
||
|
// division expressions is generally improved by working in log space.
|
||
|
func LogDet(a Matrix) (det float64, sign float64) {
|
||
|
// TODO(btracey): Add specialized routines for TriDense, etc.
|
||
|
var lu LU
|
||
|
lu.Factorize(a)
|
||
|
return lu.LogDet()
|
||
|
}
|
||
|
|
||
|
// Max returns the largest element value of the matrix A.
|
||
|
// Max will panic with matrix.ErrShape if the matrix has zero size.
|
||
|
func Max(a Matrix) float64 {
|
||
|
r, c := a.Dims()
|
||
|
if r == 0 || c == 0 {
|
||
|
panic(ErrShape)
|
||
|
}
|
||
|
// Max(A) = Max(A^T)
|
||
|
aU, _ := untranspose(a)
|
||
|
switch m := aU.(type) {
|
||
|
case RawMatrixer:
|
||
|
rm := m.RawMatrix()
|
||
|
max := math.Inf(-1)
|
||
|
for i := 0; i < rm.Rows; i++ {
|
||
|
for _, v := range rm.Data[i*rm.Stride : i*rm.Stride+rm.Cols] {
|
||
|
if v > max {
|
||
|
max = v
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return max
|
||
|
case RawTriangular:
|
||
|
rm := m.RawTriangular()
|
||
|
// The max of a triangular is at least 0 unless the size is 1.
|
||
|
if rm.N == 1 {
|
||
|
return rm.Data[0]
|
||
|
}
|
||
|
max := 0.0
|
||
|
if rm.Uplo == blas.Upper {
|
||
|
for i := 0; i < rm.N; i++ {
|
||
|
for _, v := range rm.Data[i*rm.Stride+i : i*rm.Stride+rm.N] {
|
||
|
if v > max {
|
||
|
max = v
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return max
|
||
|
}
|
||
|
for i := 0; i < rm.N; i++ {
|
||
|
for _, v := range rm.Data[i*rm.Stride : i*rm.Stride+i+1] {
|
||
|
if v > max {
|
||
|
max = v
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return max
|
||
|
case RawSymmetricer:
|
||
|
rm := m.RawSymmetric()
|
||
|
if rm.Uplo != blas.Upper {
|
||
|
panic(badSymTriangle)
|
||
|
}
|
||
|
max := math.Inf(-1)
|
||
|
for i := 0; i < rm.N; i++ {
|
||
|
for _, v := range rm.Data[i*rm.Stride+i : i*rm.Stride+rm.N] {
|
||
|
if v > max {
|
||
|
max = v
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return max
|
||
|
default:
|
||
|
r, c := aU.Dims()
|
||
|
max := math.Inf(-1)
|
||
|
for i := 0; i < r; i++ {
|
||
|
for j := 0; j < c; j++ {
|
||
|
v := aU.At(i, j)
|
||
|
if v > max {
|
||
|
max = v
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return max
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Min returns the smallest element value of the matrix A.
|
||
|
// Min will panic with matrix.ErrShape if the matrix has zero size.
|
||
|
func Min(a Matrix) float64 {
|
||
|
r, c := a.Dims()
|
||
|
if r == 0 || c == 0 {
|
||
|
panic(ErrShape)
|
||
|
}
|
||
|
// Min(A) = Min(A^T)
|
||
|
aU, _ := untranspose(a)
|
||
|
switch m := aU.(type) {
|
||
|
case RawMatrixer:
|
||
|
rm := m.RawMatrix()
|
||
|
min := math.Inf(1)
|
||
|
for i := 0; i < rm.Rows; i++ {
|
||
|
for _, v := range rm.Data[i*rm.Stride : i*rm.Stride+rm.Cols] {
|
||
|
if v < min {
|
||
|
min = v
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return min
|
||
|
case RawTriangular:
|
||
|
rm := m.RawTriangular()
|
||
|
// The min of a triangular is at most 0 unless the size is 1.
|
||
|
if rm.N == 1 {
|
||
|
return rm.Data[0]
|
||
|
}
|
||
|
min := 0.0
|
||
|
if rm.Uplo == blas.Upper {
|
||
|
for i := 0; i < rm.N; i++ {
|
||
|
for _, v := range rm.Data[i*rm.Stride+i : i*rm.Stride+rm.N] {
|
||
|
if v < min {
|
||
|
min = v
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return min
|
||
|
}
|
||
|
for i := 0; i < rm.N; i++ {
|
||
|
for _, v := range rm.Data[i*rm.Stride : i*rm.Stride+i+1] {
|
||
|
if v < min {
|
||
|
min = v
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return min
|
||
|
case RawSymmetricer:
|
||
|
rm := m.RawSymmetric()
|
||
|
if rm.Uplo != blas.Upper {
|
||
|
panic(badSymTriangle)
|
||
|
}
|
||
|
min := math.Inf(1)
|
||
|
for i := 0; i < rm.N; i++ {
|
||
|
for _, v := range rm.Data[i*rm.Stride+i : i*rm.Stride+rm.N] {
|
||
|
if v < min {
|
||
|
min = v
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return min
|
||
|
default:
|
||
|
r, c := aU.Dims()
|
||
|
min := math.Inf(1)
|
||
|
for i := 0; i < r; i++ {
|
||
|
for j := 0; j < c; j++ {
|
||
|
v := aU.At(i, j)
|
||
|
if v < min {
|
||
|
min = v
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return min
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Norm returns the specified (induced) norm of the matrix a. See
|
||
|
// https://en.wikipedia.org/wiki/Matrix_norm for the definition of an induced norm.
|
||
|
//
|
||
|
// Valid norms are:
|
||
|
// 1 - The maximum absolute column sum
|
||
|
// 2 - Frobenius norm, the square root of the sum of the squares of the elements.
|
||
|
// Inf - The maximum absolute row sum.
|
||
|
// Norm will panic with ErrNormOrder if an illegal norm order is specified and
|
||
|
// with matrix.ErrShape if the matrix has zero size.
|
||
|
func Norm(a Matrix, norm float64) float64 {
|
||
|
r, c := a.Dims()
|
||
|
if r == 0 || c == 0 {
|
||
|
panic(ErrShape)
|
||
|
}
|
||
|
aU, aTrans := untranspose(a)
|
||
|
var work []float64
|
||
|
switch rma := aU.(type) {
|
||
|
case RawMatrixer:
|
||
|
rm := rma.RawMatrix()
|
||
|
n := normLapack(norm, aTrans)
|
||
|
if n == lapack.MaxColumnSum {
|
||
|
work = getFloats(rm.Cols, false)
|
||
|
defer putFloats(work)
|
||
|
}
|
||
|
return lapack64.Lange(n, rm, work)
|
||
|
case RawTriangular:
|
||
|
rm := rma.RawTriangular()
|
||
|
n := normLapack(norm, aTrans)
|
||
|
if n == lapack.MaxRowSum || n == lapack.MaxColumnSum {
|
||
|
work = getFloats(rm.N, false)
|
||
|
defer putFloats(work)
|
||
|
}
|
||
|
return lapack64.Lantr(n, rm, work)
|
||
|
case RawSymmetricer:
|
||
|
rm := rma.RawSymmetric()
|
||
|
n := normLapack(norm, aTrans)
|
||
|
if n == lapack.MaxRowSum || n == lapack.MaxColumnSum {
|
||
|
work = getFloats(rm.N, false)
|
||
|
defer putFloats(work)
|
||
|
}
|
||
|
return lapack64.Lansy(n, rm, work)
|
||
|
case *VecDense:
|
||
|
rv := rma.RawVector()
|
||
|
switch norm {
|
||
|
default:
|
||
|
panic("unreachable")
|
||
|
case 1:
|
||
|
if aTrans {
|
||
|
imax := blas64.Iamax(rv)
|
||
|
return math.Abs(rma.At(imax, 0))
|
||
|
}
|
||
|
return blas64.Asum(rv)
|
||
|
case 2:
|
||
|
return blas64.Nrm2(rv)
|
||
|
case math.Inf(1):
|
||
|
if aTrans {
|
||
|
return blas64.Asum(rv)
|
||
|
}
|
||
|
imax := blas64.Iamax(rv)
|
||
|
return math.Abs(rma.At(imax, 0))
|
||
|
}
|
||
|
}
|
||
|
switch norm {
|
||
|
default:
|
||
|
panic("unreachable")
|
||
|
case 1:
|
||
|
var max float64
|
||
|
for j := 0; j < c; j++ {
|
||
|
var sum float64
|
||
|
for i := 0; i < r; i++ {
|
||
|
sum += math.Abs(a.At(i, j))
|
||
|
}
|
||
|
if sum > max {
|
||
|
max = sum
|
||
|
}
|
||
|
}
|
||
|
return max
|
||
|
case 2:
|
||
|
var sum float64
|
||
|
for i := 0; i < r; i++ {
|
||
|
for j := 0; j < c; j++ {
|
||
|
v := a.At(i, j)
|
||
|
sum += v * v
|
||
|
}
|
||
|
}
|
||
|
return math.Sqrt(sum)
|
||
|
case math.Inf(1):
|
||
|
var max float64
|
||
|
for i := 0; i < r; i++ {
|
||
|
var sum float64
|
||
|
for j := 0; j < c; j++ {
|
||
|
sum += math.Abs(a.At(i, j))
|
||
|
}
|
||
|
if sum > max {
|
||
|
max = sum
|
||
|
}
|
||
|
}
|
||
|
return max
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// normLapack converts the float64 norm input in Norm to a lapack.MatrixNorm.
|
||
|
func normLapack(norm float64, aTrans bool) lapack.MatrixNorm {
|
||
|
switch norm {
|
||
|
case 1:
|
||
|
n := lapack.MaxColumnSum
|
||
|
if aTrans {
|
||
|
n = lapack.MaxRowSum
|
||
|
}
|
||
|
return n
|
||
|
case 2:
|
||
|
return lapack.Frobenius
|
||
|
case math.Inf(1):
|
||
|
n := lapack.MaxRowSum
|
||
|
if aTrans {
|
||
|
n = lapack.MaxColumnSum
|
||
|
}
|
||
|
return n
|
||
|
default:
|
||
|
panic(ErrNormOrder)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Sum returns the sum of the elements of the matrix.
|
||
|
func Sum(a Matrix) float64 {
|
||
|
// TODO(btracey): Add a fast path for the other supported matrix types.
|
||
|
|
||
|
r, c := a.Dims()
|
||
|
var sum float64
|
||
|
aU, _ := untranspose(a)
|
||
|
if rma, ok := aU.(RawMatrixer); ok {
|
||
|
rm := rma.RawMatrix()
|
||
|
for i := 0; i < rm.Rows; i++ {
|
||
|
for _, v := range rm.Data[i*rm.Stride : i*rm.Stride+rm.Cols] {
|
||
|
sum += v
|
||
|
}
|
||
|
}
|
||
|
return sum
|
||
|
}
|
||
|
for i := 0; i < r; i++ {
|
||
|
for j := 0; j < c; j++ {
|
||
|
sum += a.At(i, j)
|
||
|
}
|
||
|
}
|
||
|
return sum
|
||
|
}
|
||
|
|
||
|
// A Tracer can compute the trace of the matrix. Trace must panic if the
|
||
|
// matrix is not square.
|
||
|
type Tracer interface {
|
||
|
Trace() float64
|
||
|
}
|
||
|
|
||
|
// Trace returns the trace of the matrix. Trace will panic if the
|
||
|
// matrix is not square.
|
||
|
func Trace(a Matrix) float64 {
|
||
|
m, _ := untransposeExtract(a)
|
||
|
if t, ok := m.(Tracer); ok {
|
||
|
return t.Trace()
|
||
|
}
|
||
|
r, c := a.Dims()
|
||
|
if r != c {
|
||
|
panic(ErrSquare)
|
||
|
}
|
||
|
var v float64
|
||
|
for i := 0; i < r; i++ {
|
||
|
v += a.At(i, i)
|
||
|
}
|
||
|
return v
|
||
|
}
|
||
|
|
||
|
func min(a, b int) int {
|
||
|
if a < b {
|
||
|
return a
|
||
|
}
|
||
|
return b
|
||
|
}
|
||
|
|
||
|
func max(a, b int) int {
|
||
|
if a > b {
|
||
|
return a
|
||
|
}
|
||
|
return b
|
||
|
}
|
||
|
|
||
|
// use returns a float64 slice with l elements, using f if it
|
||
|
// has the necessary capacity, otherwise creating a new slice.
|
||
|
func use(f []float64, l int) []float64 {
|
||
|
if l <= cap(f) {
|
||
|
return f[:l]
|
||
|
}
|
||
|
return make([]float64, l)
|
||
|
}
|
||
|
|
||
|
// useZeroed returns a float64 slice with l elements, using f if it
|
||
|
// has the necessary capacity, otherwise creating a new slice. The
|
||
|
// elements of the returned slice are guaranteed to be zero.
|
||
|
func useZeroed(f []float64, l int) []float64 {
|
||
|
if l <= cap(f) {
|
||
|
f = f[:l]
|
||
|
zero(f)
|
||
|
return f
|
||
|
}
|
||
|
return make([]float64, l)
|
||
|
}
|
||
|
|
||
|
// zero zeros the given slice's elements.
|
||
|
func zero(f []float64) {
|
||
|
for i := range f {
|
||
|
f[i] = 0
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// useInt returns an int slice with l elements, using i if it
|
||
|
// has the necessary capacity, otherwise creating a new slice.
|
||
|
func useInt(i []int, l int) []int {
|
||
|
if l <= cap(i) {
|
||
|
return i[:l]
|
||
|
}
|
||
|
return make([]int, l)
|
||
|
}
|