mirror of https://github.com/k3s-io/k3s
423 lines
11 KiB
Go
423 lines
11 KiB
Go
|
// Copyright ©2013 The Gonum Authors. All rights reserved.
|
|||
|
// Use of this source code is governed by a BSD-style
|
|||
|
// license that can be found in the LICENSE file.
|
|||
|
|
|||
|
package mat
|
|||
|
|
|||
|
import (
|
|||
|
"math"
|
|||
|
|
|||
|
"gonum.org/v1/gonum/blas"
|
|||
|
"gonum.org/v1/gonum/blas/blas64"
|
|||
|
"gonum.org/v1/gonum/floats"
|
|||
|
"gonum.org/v1/gonum/lapack"
|
|||
|
"gonum.org/v1/gonum/lapack/lapack64"
|
|||
|
)
|
|||
|
|
|||
|
const (
|
|||
|
badSliceLength = "mat: improper slice length"
|
|||
|
badLU = "mat: invalid LU factorization"
|
|||
|
)
|
|||
|
|
|||
|
// LU is a type for creating and using the LU factorization of a matrix.
|
|||
|
type LU struct {
|
|||
|
lu *Dense
|
|||
|
pivot []int
|
|||
|
cond float64
|
|||
|
}
|
|||
|
|
|||
|
// updateCond updates the stored condition number of the matrix. anorm is the
|
|||
|
// norm of the original matrix. If anorm is negative it will be estimated.
|
|||
|
func (lu *LU) updateCond(anorm float64, norm lapack.MatrixNorm) {
|
|||
|
n := lu.lu.mat.Cols
|
|||
|
work := getFloats(4*n, false)
|
|||
|
defer putFloats(work)
|
|||
|
iwork := getInts(n, false)
|
|||
|
defer putInts(iwork)
|
|||
|
if anorm < 0 {
|
|||
|
// This is an approximation. By the definition of a norm,
|
|||
|
// |AB| <= |A| |B|.
|
|||
|
// Since A = L*U, we get for the condition number κ that
|
|||
|
// κ(A) := |A| |A^-1| = |L*U| |A^-1| <= |L| |U| |A^-1|,
|
|||
|
// so this will overestimate the condition number somewhat.
|
|||
|
// The norm of the original factorized matrix cannot be stored
|
|||
|
// because of update possibilities.
|
|||
|
u := lu.lu.asTriDense(n, blas.NonUnit, blas.Upper)
|
|||
|
l := lu.lu.asTriDense(n, blas.Unit, blas.Lower)
|
|||
|
unorm := lapack64.Lantr(norm, u.mat, work)
|
|||
|
lnorm := lapack64.Lantr(norm, l.mat, work)
|
|||
|
anorm = unorm * lnorm
|
|||
|
}
|
|||
|
v := lapack64.Gecon(norm, lu.lu.mat, anorm, work, iwork)
|
|||
|
lu.cond = 1 / v
|
|||
|
}
|
|||
|
|
|||
|
// Factorize computes the LU factorization of the square matrix a and stores the
|
|||
|
// result. The LU decomposition will complete regardless of the singularity of a.
|
|||
|
//
|
|||
|
// The LU factorization is computed with pivoting, and so really the decomposition
|
|||
|
// is a PLU decomposition where P is a permutation matrix. The individual matrix
|
|||
|
// factors can be extracted from the factorization using the Permutation method
|
|||
|
// on Dense, and the LU LTo and UTo methods.
|
|||
|
func (lu *LU) Factorize(a Matrix) {
|
|||
|
lu.factorize(a, CondNorm)
|
|||
|
}
|
|||
|
|
|||
|
func (lu *LU) factorize(a Matrix, norm lapack.MatrixNorm) {
|
|||
|
r, c := a.Dims()
|
|||
|
if r != c {
|
|||
|
panic(ErrSquare)
|
|||
|
}
|
|||
|
if lu.lu == nil {
|
|||
|
lu.lu = NewDense(r, r, nil)
|
|||
|
} else {
|
|||
|
lu.lu.Reset()
|
|||
|
lu.lu.reuseAs(r, r)
|
|||
|
}
|
|||
|
lu.lu.Copy(a)
|
|||
|
if cap(lu.pivot) < r {
|
|||
|
lu.pivot = make([]int, r)
|
|||
|
}
|
|||
|
lu.pivot = lu.pivot[:r]
|
|||
|
work := getFloats(r, false)
|
|||
|
anorm := lapack64.Lange(norm, lu.lu.mat, work)
|
|||
|
putFloats(work)
|
|||
|
lapack64.Getrf(lu.lu.mat, lu.pivot)
|
|||
|
lu.updateCond(anorm, norm)
|
|||
|
}
|
|||
|
|
|||
|
// isValid returns whether the receiver contains a factorization.
|
|||
|
func (lu *LU) isValid() bool {
|
|||
|
return lu.lu != nil && !lu.lu.IsZero()
|
|||
|
}
|
|||
|
|
|||
|
// Cond returns the condition number for the factorized matrix.
|
|||
|
// Cond will panic if the receiver does not contain a factorization.
|
|||
|
func (lu *LU) Cond() float64 {
|
|||
|
if !lu.isValid() {
|
|||
|
panic(badLU)
|
|||
|
}
|
|||
|
return lu.cond
|
|||
|
}
|
|||
|
|
|||
|
// Reset resets the factorization so that it can be reused as the receiver of a
|
|||
|
// dimensionally restricted operation.
|
|||
|
func (lu *LU) Reset() {
|
|||
|
if lu.lu != nil {
|
|||
|
lu.lu.Reset()
|
|||
|
}
|
|||
|
lu.pivot = lu.pivot[:0]
|
|||
|
}
|
|||
|
|
|||
|
func (lu *LU) isZero() bool {
|
|||
|
return len(lu.pivot) == 0
|
|||
|
}
|
|||
|
|
|||
|
// Det returns the determinant of the matrix that has been factorized. In many
|
|||
|
// expressions, using LogDet will be more numerically stable.
|
|||
|
// Det will panic if the receiver does not contain a factorization.
|
|||
|
func (lu *LU) Det() float64 {
|
|||
|
det, sign := lu.LogDet()
|
|||
|
return math.Exp(det) * sign
|
|||
|
}
|
|||
|
|
|||
|
// LogDet returns the log of the determinant and the sign of the determinant
|
|||
|
// for the matrix that has been factorized. Numerical stability in product and
|
|||
|
// division expressions is generally improved by working in log space.
|
|||
|
// LogDet will panic if the receiver does not contain a factorization.
|
|||
|
func (lu *LU) LogDet() (det float64, sign float64) {
|
|||
|
if !lu.isValid() {
|
|||
|
panic(badLU)
|
|||
|
}
|
|||
|
|
|||
|
_, n := lu.lu.Dims()
|
|||
|
logDiag := getFloats(n, false)
|
|||
|
defer putFloats(logDiag)
|
|||
|
sign = 1.0
|
|||
|
for i := 0; i < n; i++ {
|
|||
|
v := lu.lu.at(i, i)
|
|||
|
if v < 0 {
|
|||
|
sign *= -1
|
|||
|
}
|
|||
|
if lu.pivot[i] != i {
|
|||
|
sign *= -1
|
|||
|
}
|
|||
|
logDiag[i] = math.Log(math.Abs(v))
|
|||
|
}
|
|||
|
return floats.Sum(logDiag), sign
|
|||
|
}
|
|||
|
|
|||
|
// Pivot returns pivot indices that enable the construction of the permutation
|
|||
|
// matrix P (see Dense.Permutation). If swaps == nil, then new memory will be
|
|||
|
// allocated, otherwise the length of the input must be equal to the size of the
|
|||
|
// factorized matrix.
|
|||
|
// Pivot will panic if the receiver does not contain a factorization.
|
|||
|
func (lu *LU) Pivot(swaps []int) []int {
|
|||
|
if !lu.isValid() {
|
|||
|
panic(badLU)
|
|||
|
}
|
|||
|
|
|||
|
_, n := lu.lu.Dims()
|
|||
|
if swaps == nil {
|
|||
|
swaps = make([]int, n)
|
|||
|
}
|
|||
|
if len(swaps) != n {
|
|||
|
panic(badSliceLength)
|
|||
|
}
|
|||
|
// Perform the inverse of the row swaps in order to find the final
|
|||
|
// row swap position.
|
|||
|
for i := range swaps {
|
|||
|
swaps[i] = i
|
|||
|
}
|
|||
|
for i := n - 1; i >= 0; i-- {
|
|||
|
v := lu.pivot[i]
|
|||
|
swaps[i], swaps[v] = swaps[v], swaps[i]
|
|||
|
}
|
|||
|
return swaps
|
|||
|
}
|
|||
|
|
|||
|
// RankOne updates an LU factorization as if a rank-one update had been applied to
|
|||
|
// the original matrix A, storing the result into the receiver. That is, if in
|
|||
|
// the original LU decomposition P * L * U = A, in the updated decomposition
|
|||
|
// P * L * U = A + alpha * x * y^T.
|
|||
|
// RankOne will panic if orig does not contain a factorization.
|
|||
|
func (lu *LU) RankOne(orig *LU, alpha float64, x, y Vector) {
|
|||
|
if !orig.isValid() {
|
|||
|
panic(badLU)
|
|||
|
}
|
|||
|
|
|||
|
// RankOne uses algorithm a1 on page 28 of "Multiple-Rank Updates to Matrix
|
|||
|
// Factorizations for Nonlinear Analysis and Circuit Design" by Linzhong Deng.
|
|||
|
// http://web.stanford.edu/group/SOL/dissertations/Linzhong-Deng-thesis.pdf
|
|||
|
_, n := orig.lu.Dims()
|
|||
|
if r, c := x.Dims(); r != n || c != 1 {
|
|||
|
panic(ErrShape)
|
|||
|
}
|
|||
|
if r, c := y.Dims(); r != n || c != 1 {
|
|||
|
panic(ErrShape)
|
|||
|
}
|
|||
|
if orig != lu {
|
|||
|
if lu.isZero() {
|
|||
|
if cap(lu.pivot) < n {
|
|||
|
lu.pivot = make([]int, n)
|
|||
|
}
|
|||
|
lu.pivot = lu.pivot[:n]
|
|||
|
if lu.lu == nil {
|
|||
|
lu.lu = NewDense(n, n, nil)
|
|||
|
} else {
|
|||
|
lu.lu.reuseAs(n, n)
|
|||
|
}
|
|||
|
} else if len(lu.pivot) != n {
|
|||
|
panic(ErrShape)
|
|||
|
}
|
|||
|
copy(lu.pivot, orig.pivot)
|
|||
|
lu.lu.Copy(orig.lu)
|
|||
|
}
|
|||
|
|
|||
|
xs := getFloats(n, false)
|
|||
|
defer putFloats(xs)
|
|||
|
ys := getFloats(n, false)
|
|||
|
defer putFloats(ys)
|
|||
|
for i := 0; i < n; i++ {
|
|||
|
xs[i] = x.AtVec(i)
|
|||
|
ys[i] = y.AtVec(i)
|
|||
|
}
|
|||
|
|
|||
|
// Adjust for the pivoting in the LU factorization
|
|||
|
for i, v := range lu.pivot {
|
|||
|
xs[i], xs[v] = xs[v], xs[i]
|
|||
|
}
|
|||
|
|
|||
|
lum := lu.lu.mat
|
|||
|
omega := alpha
|
|||
|
for j := 0; j < n; j++ {
|
|||
|
ujj := lum.Data[j*lum.Stride+j]
|
|||
|
ys[j] /= ujj
|
|||
|
theta := 1 + xs[j]*ys[j]*omega
|
|||
|
beta := omega * ys[j] / theta
|
|||
|
gamma := omega * xs[j]
|
|||
|
omega -= beta * gamma
|
|||
|
lum.Data[j*lum.Stride+j] *= theta
|
|||
|
for i := j + 1; i < n; i++ {
|
|||
|
xs[i] -= lum.Data[i*lum.Stride+j] * xs[j]
|
|||
|
tmp := ys[i]
|
|||
|
ys[i] -= lum.Data[j*lum.Stride+i] * ys[j]
|
|||
|
lum.Data[i*lum.Stride+j] += beta * xs[i]
|
|||
|
lum.Data[j*lum.Stride+i] += gamma * tmp
|
|||
|
}
|
|||
|
}
|
|||
|
lu.updateCond(-1, CondNorm)
|
|||
|
}
|
|||
|
|
|||
|
// LTo extracts the lower triangular matrix from an LU factorization.
|
|||
|
// If dst is nil, a new matrix is allocated. The resulting L matrix is returned.
|
|||
|
// LTo will panic if the receiver does not contain a factorization.
|
|||
|
func (lu *LU) LTo(dst *TriDense) *TriDense {
|
|||
|
if !lu.isValid() {
|
|||
|
panic(badLU)
|
|||
|
}
|
|||
|
|
|||
|
_, n := lu.lu.Dims()
|
|||
|
if dst == nil {
|
|||
|
dst = NewTriDense(n, Lower, nil)
|
|||
|
} else {
|
|||
|
dst.reuseAs(n, Lower)
|
|||
|
}
|
|||
|
// Extract the lower triangular elements.
|
|||
|
for i := 0; i < n; i++ {
|
|||
|
for j := 0; j < i; j++ {
|
|||
|
dst.mat.Data[i*dst.mat.Stride+j] = lu.lu.mat.Data[i*lu.lu.mat.Stride+j]
|
|||
|
}
|
|||
|
}
|
|||
|
// Set ones on the diagonal.
|
|||
|
for i := 0; i < n; i++ {
|
|||
|
dst.mat.Data[i*dst.mat.Stride+i] = 1
|
|||
|
}
|
|||
|
return dst
|
|||
|
}
|
|||
|
|
|||
|
// UTo extracts the upper triangular matrix from an LU factorization.
|
|||
|
// If dst is nil, a new matrix is allocated. The resulting U matrix is returned.
|
|||
|
// UTo will panic if the receiver does not contain a factorization.
|
|||
|
func (lu *LU) UTo(dst *TriDense) *TriDense {
|
|||
|
if !lu.isValid() {
|
|||
|
panic(badLU)
|
|||
|
}
|
|||
|
|
|||
|
_, n := lu.lu.Dims()
|
|||
|
if dst == nil {
|
|||
|
dst = NewTriDense(n, Upper, nil)
|
|||
|
} else {
|
|||
|
dst.reuseAs(n, Upper)
|
|||
|
}
|
|||
|
// Extract the upper triangular elements.
|
|||
|
for i := 0; i < n; i++ {
|
|||
|
for j := i; j < n; j++ {
|
|||
|
dst.mat.Data[i*dst.mat.Stride+j] = lu.lu.mat.Data[i*lu.lu.mat.Stride+j]
|
|||
|
}
|
|||
|
}
|
|||
|
return dst
|
|||
|
}
|
|||
|
|
|||
|
// Permutation constructs an r×r permutation matrix with the given row swaps.
|
|||
|
// A permutation matrix has exactly one element equal to one in each row and column
|
|||
|
// and all other elements equal to zero. swaps[i] specifies the row with which
|
|||
|
// i will be swapped, which is equivalent to the non-zero column of row i.
|
|||
|
func (m *Dense) Permutation(r int, swaps []int) {
|
|||
|
m.reuseAs(r, r)
|
|||
|
for i := 0; i < r; i++ {
|
|||
|
zero(m.mat.Data[i*m.mat.Stride : i*m.mat.Stride+r])
|
|||
|
v := swaps[i]
|
|||
|
if v < 0 || v >= r {
|
|||
|
panic(ErrRowAccess)
|
|||
|
}
|
|||
|
m.mat.Data[i*m.mat.Stride+v] = 1
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// SolveTo solves a system of linear equations using the LU decomposition of a matrix.
|
|||
|
// It computes
|
|||
|
// A * X = B if trans == false
|
|||
|
// A^T * X = B if trans == true
|
|||
|
// In both cases, A is represented in LU factorized form, and the matrix X is
|
|||
|
// stored into dst.
|
|||
|
//
|
|||
|
// If A is singular or near-singular a Condition error is returned. See
|
|||
|
// the documentation for Condition for more information.
|
|||
|
// SolveTo will panic if the receiver does not contain a factorization.
|
|||
|
func (lu *LU) SolveTo(dst *Dense, trans bool, b Matrix) error {
|
|||
|
if !lu.isValid() {
|
|||
|
panic(badLU)
|
|||
|
}
|
|||
|
|
|||
|
_, n := lu.lu.Dims()
|
|||
|
br, bc := b.Dims()
|
|||
|
if br != n {
|
|||
|
panic(ErrShape)
|
|||
|
}
|
|||
|
// TODO(btracey): Should test the condition number instead of testing that
|
|||
|
// the determinant is exactly zero.
|
|||
|
if lu.Det() == 0 {
|
|||
|
return Condition(math.Inf(1))
|
|||
|
}
|
|||
|
|
|||
|
dst.reuseAs(n, bc)
|
|||
|
bU, _ := untranspose(b)
|
|||
|
var restore func()
|
|||
|
if dst == bU {
|
|||
|
dst, restore = dst.isolatedWorkspace(bU)
|
|||
|
defer restore()
|
|||
|
} else if rm, ok := bU.(RawMatrixer); ok {
|
|||
|
dst.checkOverlap(rm.RawMatrix())
|
|||
|
}
|
|||
|
|
|||
|
dst.Copy(b)
|
|||
|
t := blas.NoTrans
|
|||
|
if trans {
|
|||
|
t = blas.Trans
|
|||
|
}
|
|||
|
lapack64.Getrs(t, lu.lu.mat, dst.mat, lu.pivot)
|
|||
|
if lu.cond > ConditionTolerance {
|
|||
|
return Condition(lu.cond)
|
|||
|
}
|
|||
|
return nil
|
|||
|
}
|
|||
|
|
|||
|
// SolveVecTo solves a system of linear equations using the LU decomposition of a matrix.
|
|||
|
// It computes
|
|||
|
// A * x = b if trans == false
|
|||
|
// A^T * x = b if trans == true
|
|||
|
// In both cases, A is represented in LU factorized form, and the vector x is
|
|||
|
// stored into dst.
|
|||
|
//
|
|||
|
// If A is singular or near-singular a Condition error is returned. See
|
|||
|
// the documentation for Condition for more information.
|
|||
|
// SolveVecTo will panic if the receiver does not contain a factorization.
|
|||
|
func (lu *LU) SolveVecTo(dst *VecDense, trans bool, b Vector) error {
|
|||
|
if !lu.isValid() {
|
|||
|
panic(badLU)
|
|||
|
}
|
|||
|
|
|||
|
_, n := lu.lu.Dims()
|
|||
|
if br, bc := b.Dims(); br != n || bc != 1 {
|
|||
|
panic(ErrShape)
|
|||
|
}
|
|||
|
switch rv := b.(type) {
|
|||
|
default:
|
|||
|
dst.reuseAs(n)
|
|||
|
return lu.SolveTo(dst.asDense(), trans, b)
|
|||
|
case RawVectorer:
|
|||
|
if dst != b {
|
|||
|
dst.checkOverlap(rv.RawVector())
|
|||
|
}
|
|||
|
// TODO(btracey): Should test the condition number instead of testing that
|
|||
|
// the determinant is exactly zero.
|
|||
|
if lu.Det() == 0 {
|
|||
|
return Condition(math.Inf(1))
|
|||
|
}
|
|||
|
|
|||
|
dst.reuseAs(n)
|
|||
|
var restore func()
|
|||
|
if dst == b {
|
|||
|
dst, restore = dst.isolatedWorkspace(b)
|
|||
|
defer restore()
|
|||
|
}
|
|||
|
dst.CopyVec(b)
|
|||
|
vMat := blas64.General{
|
|||
|
Rows: n,
|
|||
|
Cols: 1,
|
|||
|
Stride: dst.mat.Inc,
|
|||
|
Data: dst.mat.Data,
|
|||
|
}
|
|||
|
t := blas.NoTrans
|
|||
|
if trans {
|
|||
|
t = blas.Trans
|
|||
|
}
|
|||
|
lapack64.Getrs(t, lu.lu.mat, vMat, lu.pivot)
|
|||
|
if lu.cond > ConditionTolerance {
|
|||
|
return Condition(lu.cond)
|
|||
|
}
|
|||
|
return nil
|
|||
|
}
|
|||
|
}
|