k3s/vendor/gonum.org/v1/gonum/mat/lu.go

423 lines
11 KiB
Go
Raw Normal View History

2019-08-30 18:33:25 +00:00
// Copyright ©2013 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"math"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/floats"
"gonum.org/v1/gonum/lapack"
"gonum.org/v1/gonum/lapack/lapack64"
)
const (
badSliceLength = "mat: improper slice length"
badLU = "mat: invalid LU factorization"
)
// LU is a type for creating and using the LU factorization of a matrix.
type LU struct {
lu *Dense
pivot []int
cond float64
}
// updateCond updates the stored condition number of the matrix. anorm is the
// norm of the original matrix. If anorm is negative it will be estimated.
func (lu *LU) updateCond(anorm float64, norm lapack.MatrixNorm) {
n := lu.lu.mat.Cols
work := getFloats(4*n, false)
defer putFloats(work)
iwork := getInts(n, false)
defer putInts(iwork)
if anorm < 0 {
// This is an approximation. By the definition of a norm,
// |AB| <= |A| |B|.
// Since A = L*U, we get for the condition number κ that
// κ(A) := |A| |A^-1| = |L*U| |A^-1| <= |L| |U| |A^-1|,
// so this will overestimate the condition number somewhat.
// The norm of the original factorized matrix cannot be stored
// because of update possibilities.
u := lu.lu.asTriDense(n, blas.NonUnit, blas.Upper)
l := lu.lu.asTriDense(n, blas.Unit, blas.Lower)
unorm := lapack64.Lantr(norm, u.mat, work)
lnorm := lapack64.Lantr(norm, l.mat, work)
anorm = unorm * lnorm
}
v := lapack64.Gecon(norm, lu.lu.mat, anorm, work, iwork)
lu.cond = 1 / v
}
// Factorize computes the LU factorization of the square matrix a and stores the
// result. The LU decomposition will complete regardless of the singularity of a.
//
// The LU factorization is computed with pivoting, and so really the decomposition
// is a PLU decomposition where P is a permutation matrix. The individual matrix
// factors can be extracted from the factorization using the Permutation method
// on Dense, and the LU LTo and UTo methods.
func (lu *LU) Factorize(a Matrix) {
lu.factorize(a, CondNorm)
}
func (lu *LU) factorize(a Matrix, norm lapack.MatrixNorm) {
r, c := a.Dims()
if r != c {
panic(ErrSquare)
}
if lu.lu == nil {
lu.lu = NewDense(r, r, nil)
} else {
lu.lu.Reset()
lu.lu.reuseAs(r, r)
}
lu.lu.Copy(a)
if cap(lu.pivot) < r {
lu.pivot = make([]int, r)
}
lu.pivot = lu.pivot[:r]
work := getFloats(r, false)
anorm := lapack64.Lange(norm, lu.lu.mat, work)
putFloats(work)
lapack64.Getrf(lu.lu.mat, lu.pivot)
lu.updateCond(anorm, norm)
}
// isValid returns whether the receiver contains a factorization.
func (lu *LU) isValid() bool {
return lu.lu != nil && !lu.lu.IsZero()
}
// Cond returns the condition number for the factorized matrix.
// Cond will panic if the receiver does not contain a factorization.
func (lu *LU) Cond() float64 {
if !lu.isValid() {
panic(badLU)
}
return lu.cond
}
// Reset resets the factorization so that it can be reused as the receiver of a
// dimensionally restricted operation.
func (lu *LU) Reset() {
if lu.lu != nil {
lu.lu.Reset()
}
lu.pivot = lu.pivot[:0]
}
func (lu *LU) isZero() bool {
return len(lu.pivot) == 0
}
// Det returns the determinant of the matrix that has been factorized. In many
// expressions, using LogDet will be more numerically stable.
// Det will panic if the receiver does not contain a factorization.
func (lu *LU) Det() float64 {
det, sign := lu.LogDet()
return math.Exp(det) * sign
}
// LogDet returns the log of the determinant and the sign of the determinant
// for the matrix that has been factorized. Numerical stability in product and
// division expressions is generally improved by working in log space.
// LogDet will panic if the receiver does not contain a factorization.
func (lu *LU) LogDet() (det float64, sign float64) {
if !lu.isValid() {
panic(badLU)
}
_, n := lu.lu.Dims()
logDiag := getFloats(n, false)
defer putFloats(logDiag)
sign = 1.0
for i := 0; i < n; i++ {
v := lu.lu.at(i, i)
if v < 0 {
sign *= -1
}
if lu.pivot[i] != i {
sign *= -1
}
logDiag[i] = math.Log(math.Abs(v))
}
return floats.Sum(logDiag), sign
}
// Pivot returns pivot indices that enable the construction of the permutation
// matrix P (see Dense.Permutation). If swaps == nil, then new memory will be
// allocated, otherwise the length of the input must be equal to the size of the
// factorized matrix.
// Pivot will panic if the receiver does not contain a factorization.
func (lu *LU) Pivot(swaps []int) []int {
if !lu.isValid() {
panic(badLU)
}
_, n := lu.lu.Dims()
if swaps == nil {
swaps = make([]int, n)
}
if len(swaps) != n {
panic(badSliceLength)
}
// Perform the inverse of the row swaps in order to find the final
// row swap position.
for i := range swaps {
swaps[i] = i
}
for i := n - 1; i >= 0; i-- {
v := lu.pivot[i]
swaps[i], swaps[v] = swaps[v], swaps[i]
}
return swaps
}
// RankOne updates an LU factorization as if a rank-one update had been applied to
// the original matrix A, storing the result into the receiver. That is, if in
// the original LU decomposition P * L * U = A, in the updated decomposition
// P * L * U = A + alpha * x * y^T.
// RankOne will panic if orig does not contain a factorization.
func (lu *LU) RankOne(orig *LU, alpha float64, x, y Vector) {
if !orig.isValid() {
panic(badLU)
}
// RankOne uses algorithm a1 on page 28 of "Multiple-Rank Updates to Matrix
// Factorizations for Nonlinear Analysis and Circuit Design" by Linzhong Deng.
// http://web.stanford.edu/group/SOL/dissertations/Linzhong-Deng-thesis.pdf
_, n := orig.lu.Dims()
if r, c := x.Dims(); r != n || c != 1 {
panic(ErrShape)
}
if r, c := y.Dims(); r != n || c != 1 {
panic(ErrShape)
}
if orig != lu {
if lu.isZero() {
if cap(lu.pivot) < n {
lu.pivot = make([]int, n)
}
lu.pivot = lu.pivot[:n]
if lu.lu == nil {
lu.lu = NewDense(n, n, nil)
} else {
lu.lu.reuseAs(n, n)
}
} else if len(lu.pivot) != n {
panic(ErrShape)
}
copy(lu.pivot, orig.pivot)
lu.lu.Copy(orig.lu)
}
xs := getFloats(n, false)
defer putFloats(xs)
ys := getFloats(n, false)
defer putFloats(ys)
for i := 0; i < n; i++ {
xs[i] = x.AtVec(i)
ys[i] = y.AtVec(i)
}
// Adjust for the pivoting in the LU factorization
for i, v := range lu.pivot {
xs[i], xs[v] = xs[v], xs[i]
}
lum := lu.lu.mat
omega := alpha
for j := 0; j < n; j++ {
ujj := lum.Data[j*lum.Stride+j]
ys[j] /= ujj
theta := 1 + xs[j]*ys[j]*omega
beta := omega * ys[j] / theta
gamma := omega * xs[j]
omega -= beta * gamma
lum.Data[j*lum.Stride+j] *= theta
for i := j + 1; i < n; i++ {
xs[i] -= lum.Data[i*lum.Stride+j] * xs[j]
tmp := ys[i]
ys[i] -= lum.Data[j*lum.Stride+i] * ys[j]
lum.Data[i*lum.Stride+j] += beta * xs[i]
lum.Data[j*lum.Stride+i] += gamma * tmp
}
}
lu.updateCond(-1, CondNorm)
}
// LTo extracts the lower triangular matrix from an LU factorization.
// If dst is nil, a new matrix is allocated. The resulting L matrix is returned.
// LTo will panic if the receiver does not contain a factorization.
func (lu *LU) LTo(dst *TriDense) *TriDense {
if !lu.isValid() {
panic(badLU)
}
_, n := lu.lu.Dims()
if dst == nil {
dst = NewTriDense(n, Lower, nil)
} else {
dst.reuseAs(n, Lower)
}
// Extract the lower triangular elements.
for i := 0; i < n; i++ {
for j := 0; j < i; j++ {
dst.mat.Data[i*dst.mat.Stride+j] = lu.lu.mat.Data[i*lu.lu.mat.Stride+j]
}
}
// Set ones on the diagonal.
for i := 0; i < n; i++ {
dst.mat.Data[i*dst.mat.Stride+i] = 1
}
return dst
}
// UTo extracts the upper triangular matrix from an LU factorization.
// If dst is nil, a new matrix is allocated. The resulting U matrix is returned.
// UTo will panic if the receiver does not contain a factorization.
func (lu *LU) UTo(dst *TriDense) *TriDense {
if !lu.isValid() {
panic(badLU)
}
_, n := lu.lu.Dims()
if dst == nil {
dst = NewTriDense(n, Upper, nil)
} else {
dst.reuseAs(n, Upper)
}
// Extract the upper triangular elements.
for i := 0; i < n; i++ {
for j := i; j < n; j++ {
dst.mat.Data[i*dst.mat.Stride+j] = lu.lu.mat.Data[i*lu.lu.mat.Stride+j]
}
}
return dst
}
// Permutation constructs an r×r permutation matrix with the given row swaps.
// A permutation matrix has exactly one element equal to one in each row and column
// and all other elements equal to zero. swaps[i] specifies the row with which
// i will be swapped, which is equivalent to the non-zero column of row i.
func (m *Dense) Permutation(r int, swaps []int) {
m.reuseAs(r, r)
for i := 0; i < r; i++ {
zero(m.mat.Data[i*m.mat.Stride : i*m.mat.Stride+r])
v := swaps[i]
if v < 0 || v >= r {
panic(ErrRowAccess)
}
m.mat.Data[i*m.mat.Stride+v] = 1
}
}
// SolveTo solves a system of linear equations using the LU decomposition of a matrix.
// It computes
// A * X = B if trans == false
// A^T * X = B if trans == true
// In both cases, A is represented in LU factorized form, and the matrix X is
// stored into dst.
//
// If A is singular or near-singular a Condition error is returned. See
// the documentation for Condition for more information.
// SolveTo will panic if the receiver does not contain a factorization.
func (lu *LU) SolveTo(dst *Dense, trans bool, b Matrix) error {
if !lu.isValid() {
panic(badLU)
}
_, n := lu.lu.Dims()
br, bc := b.Dims()
if br != n {
panic(ErrShape)
}
// TODO(btracey): Should test the condition number instead of testing that
// the determinant is exactly zero.
if lu.Det() == 0 {
return Condition(math.Inf(1))
}
dst.reuseAs(n, bc)
bU, _ := untranspose(b)
var restore func()
if dst == bU {
dst, restore = dst.isolatedWorkspace(bU)
defer restore()
} else if rm, ok := bU.(RawMatrixer); ok {
dst.checkOverlap(rm.RawMatrix())
}
dst.Copy(b)
t := blas.NoTrans
if trans {
t = blas.Trans
}
lapack64.Getrs(t, lu.lu.mat, dst.mat, lu.pivot)
if lu.cond > ConditionTolerance {
return Condition(lu.cond)
}
return nil
}
// SolveVecTo solves a system of linear equations using the LU decomposition of a matrix.
// It computes
// A * x = b if trans == false
// A^T * x = b if trans == true
// In both cases, A is represented in LU factorized form, and the vector x is
// stored into dst.
//
// If A is singular or near-singular a Condition error is returned. See
// the documentation for Condition for more information.
// SolveVecTo will panic if the receiver does not contain a factorization.
func (lu *LU) SolveVecTo(dst *VecDense, trans bool, b Vector) error {
if !lu.isValid() {
panic(badLU)
}
_, n := lu.lu.Dims()
if br, bc := b.Dims(); br != n || bc != 1 {
panic(ErrShape)
}
switch rv := b.(type) {
default:
dst.reuseAs(n)
return lu.SolveTo(dst.asDense(), trans, b)
case RawVectorer:
if dst != b {
dst.checkOverlap(rv.RawVector())
}
// TODO(btracey): Should test the condition number instead of testing that
// the determinant is exactly zero.
if lu.Det() == 0 {
return Condition(math.Inf(1))
}
dst.reuseAs(n)
var restore func()
if dst == b {
dst, restore = dst.isolatedWorkspace(b)
defer restore()
}
dst.CopyVec(b)
vMat := blas64.General{
Rows: n,
Cols: 1,
Stride: dst.mat.Inc,
Data: dst.mat.Data,
}
t := blas.NoTrans
if trans {
t = blas.Trans
}
lapack64.Getrs(t, lu.lu.mat, vMat, lu.pivot)
if lu.cond > ConditionTolerance {
return Condition(lu.cond)
}
return nil
}
}