mirror of https://github.com/k3s-io/k3s
122 lines
2.6 KiB
Go
122 lines
2.6 KiB
Go
|
// Copyright ©2014 The Gonum Authors. All rights reserved.
|
||
|
// Use of this source code is governed by a BSD-style
|
||
|
// license that can be found in the LICENSE file.
|
||
|
|
||
|
package mat
|
||
|
|
||
|
import (
|
||
|
"gonum.org/v1/gonum/blas"
|
||
|
"gonum.org/v1/gonum/blas/blas64"
|
||
|
"gonum.org/v1/gonum/internal/asm/f64"
|
||
|
)
|
||
|
|
||
|
// Inner computes the generalized inner product
|
||
|
// x^T A y
|
||
|
// between column vectors x and y with matrix A. This is only a true inner product if
|
||
|
// A is symmetric positive definite, though the operation works for any matrix A.
|
||
|
//
|
||
|
// Inner panics if x.Len != m or y.Len != n when A is an m x n matrix.
|
||
|
func Inner(x Vector, a Matrix, y Vector) float64 {
|
||
|
m, n := a.Dims()
|
||
|
if x.Len() != m {
|
||
|
panic(ErrShape)
|
||
|
}
|
||
|
if y.Len() != n {
|
||
|
panic(ErrShape)
|
||
|
}
|
||
|
if m == 0 || n == 0 {
|
||
|
return 0
|
||
|
}
|
||
|
|
||
|
var sum float64
|
||
|
|
||
|
switch a := a.(type) {
|
||
|
case RawSymmetricer:
|
||
|
amat := a.RawSymmetric()
|
||
|
if amat.Uplo != blas.Upper {
|
||
|
// Panic as a string not a mat.Error.
|
||
|
panic(badSymTriangle)
|
||
|
}
|
||
|
var xmat, ymat blas64.Vector
|
||
|
if xrv, ok := x.(RawVectorer); ok {
|
||
|
xmat = xrv.RawVector()
|
||
|
} else {
|
||
|
break
|
||
|
}
|
||
|
if yrv, ok := y.(RawVectorer); ok {
|
||
|
ymat = yrv.RawVector()
|
||
|
} else {
|
||
|
break
|
||
|
}
|
||
|
for i := 0; i < x.Len(); i++ {
|
||
|
xi := x.AtVec(i)
|
||
|
if xi != 0 {
|
||
|
if ymat.Inc == 1 {
|
||
|
sum += xi * f64.DotUnitary(
|
||
|
amat.Data[i*amat.Stride+i:i*amat.Stride+n],
|
||
|
ymat.Data[i:],
|
||
|
)
|
||
|
} else {
|
||
|
sum += xi * f64.DotInc(
|
||
|
amat.Data[i*amat.Stride+i:i*amat.Stride+n],
|
||
|
ymat.Data[i*ymat.Inc:], uintptr(n-i),
|
||
|
1, uintptr(ymat.Inc),
|
||
|
0, 0,
|
||
|
)
|
||
|
}
|
||
|
}
|
||
|
yi := y.AtVec(i)
|
||
|
if i != n-1 && yi != 0 {
|
||
|
if xmat.Inc == 1 {
|
||
|
sum += yi * f64.DotUnitary(
|
||
|
amat.Data[i*amat.Stride+i+1:i*amat.Stride+n],
|
||
|
xmat.Data[i+1:],
|
||
|
)
|
||
|
} else {
|
||
|
sum += yi * f64.DotInc(
|
||
|
amat.Data[i*amat.Stride+i+1:i*amat.Stride+n],
|
||
|
xmat.Data[(i+1)*xmat.Inc:], uintptr(n-i-1),
|
||
|
1, uintptr(xmat.Inc),
|
||
|
0, 0,
|
||
|
)
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return sum
|
||
|
case RawMatrixer:
|
||
|
amat := a.RawMatrix()
|
||
|
var ymat blas64.Vector
|
||
|
if yrv, ok := y.(RawVectorer); ok {
|
||
|
ymat = yrv.RawVector()
|
||
|
} else {
|
||
|
break
|
||
|
}
|
||
|
for i := 0; i < x.Len(); i++ {
|
||
|
xi := x.AtVec(i)
|
||
|
if xi != 0 {
|
||
|
if ymat.Inc == 1 {
|
||
|
sum += xi * f64.DotUnitary(
|
||
|
amat.Data[i*amat.Stride:i*amat.Stride+n],
|
||
|
ymat.Data,
|
||
|
)
|
||
|
} else {
|
||
|
sum += xi * f64.DotInc(
|
||
|
amat.Data[i*amat.Stride:i*amat.Stride+n],
|
||
|
ymat.Data, uintptr(n),
|
||
|
1, uintptr(ymat.Inc),
|
||
|
0, 0,
|
||
|
)
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return sum
|
||
|
}
|
||
|
for i := 0; i < x.Len(); i++ {
|
||
|
xi := x.AtVec(i)
|
||
|
for j := 0; j < y.Len(); j++ {
|
||
|
sum += xi * a.At(i, j) * y.AtVec(j)
|
||
|
}
|
||
|
}
|
||
|
return sum
|
||
|
}
|