As consistent with the overall [API convention](../devel/api-conventions.md#typical-status-properties), phase is a simple, high-level summary of the phase of the lifecycle of a pod. It is not intended to be a comprehensive rollup of observations of container-level or even pod-level conditions or other state, nor is it intended to be a comprehensive state machine.
The number and meanings of `PodPhase` values are tightly guarded. Other than what is documented here, nothing should be assumed about pods with a given `PodPhase`.
* Pending: The pod has been accepted by the system, but one or more of the container images has not been created. This includes time before being scheduled as well as time spent downloading images over the network, which could take a while.
* Running: The pod has been bound to a node, and all of the containers have been created. At least one container is still running, or is in the process of starting or restarting.
* Succeeded: All containers in the pod have terminated in success, and will not be restarted.
* Failed: All containers in the pod have terminated, at least one container has terminated in failure (exited with non-zero exit status or was terminated by the system).
A pod containing containers that specify readiness probes will also report the Ready condition. Condition status values may be `True`, `False`, or `Unknown`.
A [Probe](https://godoc.org/k8s.io/kubernetes/pkg/api/v1#Probe) is a diagnostic performed periodically by the kubelet on a container. Specifically the diagnostic is one of three [Handlers](https://godoc.org/k8s.io/kubernetes/pkg/api/v1#Handler):
*`HTTPGetAction`: performs an HTTP Get against the container's IP address on a specified port and path expecting on success that the response has a status code greater than or equal to 200 and less than 400.
*`LivenessProbe`: indicates whether the container is *live*, i.e. still running. The LivenessProbe hints to the kubelet when a container is unhealthy. If the LivenessProbe fails, the kubelet will kill the container and the container will be subjected to it's [RestartPolicy](#restartpolicy). The default state of Liveness before the initial delay is `Success`. The state of Liveness for a container when no probe is provided is assumed to be `Success`.
*`ReadinessProbe`: indicates whether the container is *ready* to service requests. If the ReadinessProbe fails, the endpoints controller will remove the pod's IP address from the endpoints of all services that match the pod. Thus, the ReadinessProbe is sometimes useful to signal to the endpoints controller that even though a pod may be running, it should not receive traffic from the proxy (e.g. the container has a long startup time before it starts listening or the container is down for maintenance). The default state of Readiness before the initial delay is `Failure`. The state of Readiness for a container when no probe is provided is assumed to be `Success`.
More detailed information about the current (and previous) container statuses can be found in [ContainerStatuses](https://godoc.org/k8s.io/kubernetes/pkg/api/v1#PodStatus). The information reported depends on the current [ContainerState](https://godoc.org/k8s.io/kubernetes/pkg/api/v1#ContainerState), which may be Waiting, Running, or Terminated.
The possible values for RestartPolicy are `Always`, `OnFailure`, or `Never`. If RestartPolicy is not set, the default value is `Always`. RestartPolicy applies to all containers in the pod. RestartPolicy only refers to restarts of the containers by the Kubelet on the same node. Failed containers that are restarted by Kubelet, are restarted with an exponential back-off delay, the delay is in multiples of sync-frequency 0, 1x, 2x, 4x, 8x ... capped at 5 minutes and is reset after 10 minutes of successful execution. As discussed in the [pods document](pods.md#durability-of-pods-or-lack-thereof), once bound to a node, a pod will never be rebound to another node. This means that some kind of controller is necessary in order for a pod to survive node failure, even if just a single pod at a time is desired.
In general, pods which are created do not disappear until someone destroys them. This might be a human or a `ReplicationController`, or another controller. The only exception to this rule is that pods with a `PodPhase` of `Succeeded` or `Failed` for more than some duration (determined by the master) will expire and be automatically reaped.
If a node dies or is disconnected from the rest of the cluster, some entity within the system (call it the NodeController for now) is responsible for applying policy (e.g. a timeout) and marking any pods on the lost node as `Failed`.