k3s/vendor/github.com/vishvananda/netlink/xfrm_state_linux.go

445 lines
12 KiB
Go
Raw Normal View History

2019-01-12 04:58:27 +00:00
package netlink
import (
"fmt"
"syscall"
"unsafe"
"github.com/vishvananda/netlink/nl"
)
func writeStateAlgo(a *XfrmStateAlgo) []byte {
algo := nl.XfrmAlgo{
AlgKeyLen: uint32(len(a.Key) * 8),
AlgKey: a.Key,
}
end := len(a.Name)
if end > 64 {
end = 64
}
copy(algo.AlgName[:end], a.Name)
return algo.Serialize()
}
func writeStateAlgoAuth(a *XfrmStateAlgo) []byte {
algo := nl.XfrmAlgoAuth{
AlgKeyLen: uint32(len(a.Key) * 8),
AlgTruncLen: uint32(a.TruncateLen),
AlgKey: a.Key,
}
end := len(a.Name)
if end > 64 {
end = 64
}
copy(algo.AlgName[:end], a.Name)
return algo.Serialize()
}
func writeStateAlgoAead(a *XfrmStateAlgo) []byte {
algo := nl.XfrmAlgoAEAD{
AlgKeyLen: uint32(len(a.Key) * 8),
AlgICVLen: uint32(a.ICVLen),
AlgKey: a.Key,
}
end := len(a.Name)
if end > 64 {
end = 64
}
copy(algo.AlgName[:end], a.Name)
return algo.Serialize()
}
func writeMark(m *XfrmMark) []byte {
mark := &nl.XfrmMark{
Value: m.Value,
Mask: m.Mask,
}
if mark.Mask == 0 {
mark.Mask = ^uint32(0)
}
return mark.Serialize()
}
func writeReplayEsn(replayWindow int) []byte {
replayEsn := &nl.XfrmReplayStateEsn{
OSeq: 0,
Seq: 0,
OSeqHi: 0,
SeqHi: 0,
ReplayWindow: uint32(replayWindow),
}
// taken from iproute2/ip/xfrm_state.c:
replayEsn.BmpLen = uint32((replayWindow + (4 * 8) - 1) / (4 * 8))
return replayEsn.Serialize()
}
// XfrmStateAdd will add an xfrm state to the system.
// Equivalent to: `ip xfrm state add $state`
func XfrmStateAdd(state *XfrmState) error {
return pkgHandle.XfrmStateAdd(state)
}
// XfrmStateAdd will add an xfrm state to the system.
// Equivalent to: `ip xfrm state add $state`
func (h *Handle) XfrmStateAdd(state *XfrmState) error {
return h.xfrmStateAddOrUpdate(state, nl.XFRM_MSG_NEWSA)
}
// XfrmStateAllocSpi will allocate an xfrm state in the system.
// Equivalent to: `ip xfrm state allocspi`
func XfrmStateAllocSpi(state *XfrmState) (*XfrmState, error) {
return pkgHandle.xfrmStateAllocSpi(state)
}
// XfrmStateUpdate will update an xfrm state to the system.
// Equivalent to: `ip xfrm state update $state`
func XfrmStateUpdate(state *XfrmState) error {
return pkgHandle.XfrmStateUpdate(state)
}
// XfrmStateUpdate will update an xfrm state to the system.
// Equivalent to: `ip xfrm state update $state`
func (h *Handle) XfrmStateUpdate(state *XfrmState) error {
return h.xfrmStateAddOrUpdate(state, nl.XFRM_MSG_UPDSA)
}
func (h *Handle) xfrmStateAddOrUpdate(state *XfrmState, nlProto int) error {
// A state with spi 0 can't be deleted so don't allow it to be set
if state.Spi == 0 {
return fmt.Errorf("Spi must be set when adding xfrm state.")
}
req := h.newNetlinkRequest(nlProto, syscall.NLM_F_CREATE|syscall.NLM_F_EXCL|syscall.NLM_F_ACK)
msg := xfrmUsersaInfoFromXfrmState(state)
if state.ESN {
if state.ReplayWindow == 0 {
return fmt.Errorf("ESN flag set without ReplayWindow")
}
msg.Flags |= nl.XFRM_STATE_ESN
msg.ReplayWindow = 0
}
limitsToLft(state.Limits, &msg.Lft)
req.AddData(msg)
if state.Auth != nil {
out := nl.NewRtAttr(nl.XFRMA_ALG_AUTH_TRUNC, writeStateAlgoAuth(state.Auth))
req.AddData(out)
}
if state.Crypt != nil {
out := nl.NewRtAttr(nl.XFRMA_ALG_CRYPT, writeStateAlgo(state.Crypt))
req.AddData(out)
}
if state.Aead != nil {
out := nl.NewRtAttr(nl.XFRMA_ALG_AEAD, writeStateAlgoAead(state.Aead))
req.AddData(out)
}
if state.Encap != nil {
encapData := make([]byte, nl.SizeofXfrmEncapTmpl)
encap := nl.DeserializeXfrmEncapTmpl(encapData)
encap.EncapType = uint16(state.Encap.Type)
encap.EncapSport = nl.Swap16(uint16(state.Encap.SrcPort))
encap.EncapDport = nl.Swap16(uint16(state.Encap.DstPort))
encap.EncapOa.FromIP(state.Encap.OriginalAddress)
out := nl.NewRtAttr(nl.XFRMA_ENCAP, encapData)
req.AddData(out)
}
if state.Mark != nil {
out := nl.NewRtAttr(nl.XFRMA_MARK, writeMark(state.Mark))
req.AddData(out)
}
if state.ESN {
out := nl.NewRtAttr(nl.XFRMA_REPLAY_ESN_VAL, writeReplayEsn(state.ReplayWindow))
req.AddData(out)
}
_, err := req.Execute(syscall.NETLINK_XFRM, 0)
return err
}
func (h *Handle) xfrmStateAllocSpi(state *XfrmState) (*XfrmState, error) {
req := h.newNetlinkRequest(nl.XFRM_MSG_ALLOCSPI,
syscall.NLM_F_CREATE|syscall.NLM_F_EXCL|syscall.NLM_F_ACK)
msg := &nl.XfrmUserSpiInfo{}
msg.XfrmUsersaInfo = *(xfrmUsersaInfoFromXfrmState(state))
// 1-255 is reserved by IANA for future use
msg.Min = 0x100
msg.Max = 0xffffffff
req.AddData(msg)
if state.Mark != nil {
out := nl.NewRtAttr(nl.XFRMA_MARK, writeMark(state.Mark))
req.AddData(out)
}
msgs, err := req.Execute(syscall.NETLINK_XFRM, 0)
if err != nil {
return nil, err
}
s, err := parseXfrmState(msgs[0], FAMILY_ALL)
if err != nil {
return nil, err
}
return s, err
}
// XfrmStateDel will delete an xfrm state from the system. Note that
// the Algos are ignored when matching the state to delete.
// Equivalent to: `ip xfrm state del $state`
func XfrmStateDel(state *XfrmState) error {
return pkgHandle.XfrmStateDel(state)
}
// XfrmStateDel will delete an xfrm state from the system. Note that
// the Algos are ignored when matching the state to delete.
// Equivalent to: `ip xfrm state del $state`
func (h *Handle) XfrmStateDel(state *XfrmState) error {
_, err := h.xfrmStateGetOrDelete(state, nl.XFRM_MSG_DELSA)
return err
}
// XfrmStateList gets a list of xfrm states in the system.
// Equivalent to: `ip [-4|-6] xfrm state show`.
// The list can be filtered by ip family.
func XfrmStateList(family int) ([]XfrmState, error) {
return pkgHandle.XfrmStateList(family)
}
// XfrmStateList gets a list of xfrm states in the system.
// Equivalent to: `ip xfrm state show`.
// The list can be filtered by ip family.
func (h *Handle) XfrmStateList(family int) ([]XfrmState, error) {
req := h.newNetlinkRequest(nl.XFRM_MSG_GETSA, syscall.NLM_F_DUMP)
msgs, err := req.Execute(syscall.NETLINK_XFRM, nl.XFRM_MSG_NEWSA)
if err != nil {
return nil, err
}
var res []XfrmState
for _, m := range msgs {
if state, err := parseXfrmState(m, family); err == nil {
res = append(res, *state)
} else if err == familyError {
continue
} else {
return nil, err
}
}
return res, nil
}
// XfrmStateGet gets the xfrm state described by the ID, if found.
// Equivalent to: `ip xfrm state get ID [ mark MARK [ mask MASK ] ]`.
// Only the fields which constitue the SA ID must be filled in:
// ID := [ src ADDR ] [ dst ADDR ] [ proto XFRM-PROTO ] [ spi SPI ]
// mark is optional
func XfrmStateGet(state *XfrmState) (*XfrmState, error) {
return pkgHandle.XfrmStateGet(state)
}
// XfrmStateGet gets the xfrm state described by the ID, if found.
// Equivalent to: `ip xfrm state get ID [ mark MARK [ mask MASK ] ]`.
// Only the fields which constitue the SA ID must be filled in:
// ID := [ src ADDR ] [ dst ADDR ] [ proto XFRM-PROTO ] [ spi SPI ]
// mark is optional
func (h *Handle) XfrmStateGet(state *XfrmState) (*XfrmState, error) {
return h.xfrmStateGetOrDelete(state, nl.XFRM_MSG_GETSA)
}
func (h *Handle) xfrmStateGetOrDelete(state *XfrmState, nlProto int) (*XfrmState, error) {
req := h.newNetlinkRequest(nlProto, syscall.NLM_F_ACK)
msg := &nl.XfrmUsersaId{}
msg.Family = uint16(nl.GetIPFamily(state.Dst))
msg.Daddr.FromIP(state.Dst)
msg.Proto = uint8(state.Proto)
msg.Spi = nl.Swap32(uint32(state.Spi))
req.AddData(msg)
if state.Mark != nil {
out := nl.NewRtAttr(nl.XFRMA_MARK, writeMark(state.Mark))
req.AddData(out)
}
if state.Src != nil {
out := nl.NewRtAttr(nl.XFRMA_SRCADDR, state.Src.To16())
req.AddData(out)
}
resType := nl.XFRM_MSG_NEWSA
if nlProto == nl.XFRM_MSG_DELSA {
resType = 0
}
msgs, err := req.Execute(syscall.NETLINK_XFRM, uint16(resType))
if err != nil {
return nil, err
}
if nlProto == nl.XFRM_MSG_DELSA {
return nil, nil
}
s, err := parseXfrmState(msgs[0], FAMILY_ALL)
if err != nil {
return nil, err
}
return s, nil
}
var familyError = fmt.Errorf("family error")
func xfrmStateFromXfrmUsersaInfo(msg *nl.XfrmUsersaInfo) *XfrmState {
var state XfrmState
state.Dst = msg.Id.Daddr.ToIP()
state.Src = msg.Saddr.ToIP()
state.Proto = Proto(msg.Id.Proto)
state.Mode = Mode(msg.Mode)
state.Spi = int(nl.Swap32(msg.Id.Spi))
state.Reqid = int(msg.Reqid)
state.ReplayWindow = int(msg.ReplayWindow)
lftToLimits(&msg.Lft, &state.Limits)
return &state
}
func parseXfrmState(m []byte, family int) (*XfrmState, error) {
msg := nl.DeserializeXfrmUsersaInfo(m)
// This is mainly for the state dump
if family != FAMILY_ALL && family != int(msg.Family) {
return nil, familyError
}
state := xfrmStateFromXfrmUsersaInfo(msg)
attrs, err := nl.ParseRouteAttr(m[nl.SizeofXfrmUsersaInfo:])
if err != nil {
return nil, err
}
for _, attr := range attrs {
switch attr.Attr.Type {
case nl.XFRMA_ALG_AUTH, nl.XFRMA_ALG_CRYPT:
var resAlgo *XfrmStateAlgo
if attr.Attr.Type == nl.XFRMA_ALG_AUTH {
if state.Auth == nil {
state.Auth = new(XfrmStateAlgo)
}
resAlgo = state.Auth
} else {
state.Crypt = new(XfrmStateAlgo)
resAlgo = state.Crypt
}
algo := nl.DeserializeXfrmAlgo(attr.Value[:])
(*resAlgo).Name = nl.BytesToString(algo.AlgName[:])
(*resAlgo).Key = algo.AlgKey
case nl.XFRMA_ALG_AUTH_TRUNC:
if state.Auth == nil {
state.Auth = new(XfrmStateAlgo)
}
algo := nl.DeserializeXfrmAlgoAuth(attr.Value[:])
state.Auth.Name = nl.BytesToString(algo.AlgName[:])
state.Auth.Key = algo.AlgKey
state.Auth.TruncateLen = int(algo.AlgTruncLen)
case nl.XFRMA_ALG_AEAD:
state.Aead = new(XfrmStateAlgo)
algo := nl.DeserializeXfrmAlgoAEAD(attr.Value[:])
state.Aead.Name = nl.BytesToString(algo.AlgName[:])
state.Aead.Key = algo.AlgKey
state.Aead.ICVLen = int(algo.AlgICVLen)
case nl.XFRMA_ENCAP:
encap := nl.DeserializeXfrmEncapTmpl(attr.Value[:])
state.Encap = new(XfrmStateEncap)
state.Encap.Type = EncapType(encap.EncapType)
state.Encap.SrcPort = int(nl.Swap16(encap.EncapSport))
state.Encap.DstPort = int(nl.Swap16(encap.EncapDport))
state.Encap.OriginalAddress = encap.EncapOa.ToIP()
case nl.XFRMA_MARK:
mark := nl.DeserializeXfrmMark(attr.Value[:])
state.Mark = new(XfrmMark)
state.Mark.Value = mark.Value
state.Mark.Mask = mark.Mask
}
}
return state, nil
}
// XfrmStateFlush will flush the xfrm state on the system.
// proto = 0 means any transformation protocols
// Equivalent to: `ip xfrm state flush [ proto XFRM-PROTO ]`
func XfrmStateFlush(proto Proto) error {
return pkgHandle.XfrmStateFlush(proto)
}
// XfrmStateFlush will flush the xfrm state on the system.
// proto = 0 means any transformation protocols
// Equivalent to: `ip xfrm state flush [ proto XFRM-PROTO ]`
func (h *Handle) XfrmStateFlush(proto Proto) error {
req := h.newNetlinkRequest(nl.XFRM_MSG_FLUSHSA, syscall.NLM_F_ACK)
req.AddData(&nl.XfrmUsersaFlush{Proto: uint8(proto)})
_, err := req.Execute(syscall.NETLINK_XFRM, 0)
if err != nil {
return err
}
return nil
}
func limitsToLft(lmts XfrmStateLimits, lft *nl.XfrmLifetimeCfg) {
if lmts.ByteSoft != 0 {
lft.SoftByteLimit = lmts.ByteSoft
} else {
lft.SoftByteLimit = nl.XFRM_INF
}
if lmts.ByteHard != 0 {
lft.HardByteLimit = lmts.ByteHard
} else {
lft.HardByteLimit = nl.XFRM_INF
}
if lmts.PacketSoft != 0 {
lft.SoftPacketLimit = lmts.PacketSoft
} else {
lft.SoftPacketLimit = nl.XFRM_INF
}
if lmts.PacketHard != 0 {
lft.HardPacketLimit = lmts.PacketHard
} else {
lft.HardPacketLimit = nl.XFRM_INF
}
lft.SoftAddExpiresSeconds = lmts.TimeSoft
lft.HardAddExpiresSeconds = lmts.TimeHard
lft.SoftUseExpiresSeconds = lmts.TimeUseSoft
lft.HardUseExpiresSeconds = lmts.TimeUseHard
}
func lftToLimits(lft *nl.XfrmLifetimeCfg, lmts *XfrmStateLimits) {
*lmts = *(*XfrmStateLimits)(unsafe.Pointer(lft))
}
func xfrmUsersaInfoFromXfrmState(state *XfrmState) *nl.XfrmUsersaInfo {
msg := &nl.XfrmUsersaInfo{}
msg.Family = uint16(nl.GetIPFamily(state.Dst))
msg.Id.Daddr.FromIP(state.Dst)
msg.Saddr.FromIP(state.Src)
msg.Id.Proto = uint8(state.Proto)
msg.Mode = uint8(state.Mode)
msg.Id.Spi = nl.Swap32(uint32(state.Spi))
msg.Reqid = uint32(state.Reqid)
msg.ReplayWindow = uint8(state.ReplayWindow)
return msg
}